
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Section on Special Section on Parallel and Distributed Computing and Networking

Optimal Parallel Algorithms for Computing the Sum, the
Prefix-sums, and the Summed Area Table on the Memory Machine
Models

Koji NAKANO†, Member

SUMMARY The main contribution of this paper is to show optimal
parallel algorithms to compute the sum, the prefix-sums, and the summed
area table on two memory machine models, the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM). The DMM and the
UMM are theoretical parallel computing models that capture the essence
of the shared memory and the global memory of GPUs. These models
have three parameters, the number p of threads, and the width w of the
memory, and the memory access latency l. We first show that the sum of
n numbers can be computed in O(n

w +
nl
p + l log n) time units on the DMM

and the UMM. We then go on to show that Ω(n
w +

nl
p + l log n) time units

are necessary to compute the sum. We also present a parallel algorithm that
computes the prefix-sums of n numbers in O(n

w +
nl
p + l log n) time units

on the DMM and the UMM. Finally, we show that the summed area table
of size

√
n × √n can be computed in O(n

w +
nl
p + l log n) time units on the

DMM and the UMM. Since the computation of the prefix-sums and the
summed area table is at least as hard as the sum computation, these parallel
algorithms are also optimal.
key words: Memory machine models, prefix-sums computation, parallel
algorithm, GPU, CUDA

1. Introduction

The research of parallel algorithms has a long history of
more than 40 years. Sequential algorithms have been devel-
oped mostly on the Random Access Machine (RAM) [1].
In contrast, since there are a variety of connection methods
and patterns between processors and memories, many par-
allel computing models have been presented and many par-
allel algorithmic techniques have been shown on them. The
most well-studied parallel computing model is the Parallel
Random Access Machine (PRAM) [2]–[4], which consists
of processors and a shared memory. Each processor on the
PRAM can access any address of the shared memory in a
time unit. The PRAM is a good parallel computing model in
the sense that parallelism of each problem can be revealed
by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that
can be accessed by all processors at the same time, it is not
feasible.

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [5]–[8]. Latest GPUs are designed for
general purpose computing and can perform computation in

Manuscript received January 1, 2011.
Manuscript revised January 1, 2011.
†The author is with the Department of Information Engineer-

ing, Hiroshima University.
DOI: 10.1587/transinf.E0.D.1

applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application de-
velopers [5], [9]. NVIDIA provides a parallel computing ar-
chitecture called CUDA (Compute Unified Device Architec-
ture) [10], the computing engine for NVIDIA GPUs. CUDA
gives developers access to the virtual instruction set and
memory of the parallel computational elements in NVIDIA
GPUs. In many cases, GPUs are more efficient than multi-
core processors [11], since they have hundreds of processor
cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA
GPUs: the global memory and the shared memory [10]. The
global memory is implemented as an off-chip DRAM, and
has large capacity, say, 1.5-6 Gbytes, but its access latency
is very large. The shared memory is an extremely fast on-
chip memory with lower capacity, say, 16-64 Kbytes. The
efficient usage of the global memory and the shared mem-
ory is a key for CUDA developers to accelerate applications
using GPUs. In particular, we need to consider the coalesc-
ing of the global memory access and the bank conflict of
the shared memory access [7], [11], [12]. To maximize the
bandwidth between the GPU and the DRAM chips, the con-
secutive addresses of the global memory must be accessed
at the same time. Thus, threads of CUDA should perform
coalesced access when they access the global memory. The
address space of the shared memory is mapped into several
physical memory banks. If two or more threads access the
same memory banks at the same time, the access requests
are processed sequentially. Hence to maximize the memory
access performance, threads should access distinct memory
banks to avoid the bank conflicts of the memory access.

In our previous paper [13], we have introduced two
models, the Discrete Memory Machine (DMM) and the Uni-
fied Memory Machine (UMM), which reflect the essential
features of the shared memory and the global memory of
NVIDIA GPUs. We have presented that an off-line permuta-
tion algorithm developed for the DMM runs efficiently on an
GPU [14]. The outline of the architectures of the DMM and
the UMM are illustrated in Figure 1. In both architectures,
a sea of threads (Ts) are connected to the memory banks
(MBs) through the memory management unit (MMU). Each
thread is a Random Access Machine (RAM) [1], which can
execute fundamental operations in a time unit. We do not
discuss the architecture of the sea of threads in this paper,
but we can imagine that it consists of a set of multi-core pro-

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers

2
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

cessors which can execute many threads in parallel. Threads
are executed in SIMD [15] fashion, and the processors run
on the same program and work on the different data.

The DMM and the UMM have three parameters: width
w, latency l, and the number p of threads. The width w is
the number of MBs. Also, they can dispatch w threads in p
threads and the w threads can send memory access requests.
The latency l is the number of clock cycles to complete the
memory access requests.

MBs constitute a single address space of the memory.
A single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
i is stored in the (i mod w)-th bank, where w is the number
of MBs. We can think that w addresses w · j, w · j + 1, . . .,
(w+1) · j−1 for each j ≥ 0 constitute an address group. The
main difference of the two architectures is the connection of
the address line between the MMU and the MBs, which can
transfer an address value. In the DMM, the address lines
connect the MBs and the MMU separately, while a single
set of address lines from the MMU is connected to the MBs
in the UMM. Hence, in the UMM, the same address value is
broadcast to every MB, and the same address of the MBs can
be accessed in each time unit. On the other hand, different
addresses of the MBs can be accessed in the DMM. Hence,
the DMM allows to access any address group of each MB
at the same time, while the UMM only allows to access the
same address group of all MBs. Since the memory access
of the UMM is more restricted than that of the DMM, the
UMM is less powerful than the DMM.

DMM UMM

MMU

MB MB MB MB

MMU

MB MB MB MB

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

T T T T T T

a sea of threads
running on multicore processors

data lineaddress line

a sea of threads
running on multicore processors

Fig. 1 The architectures of the DMM and the UMM

The performance of algorithms of the PRAM is usually
evaluated using two parameters: the size n of the input and
the number p of processors. For example, it is well known
that the sum of n numbers can be computed in O(n

p + log n)
time on the PRAM [2]. We use four parameters, the size n
of the input, the number p of threads, the width w and the
latency l of the memory when we evaluate the performance
of algorithms on the DMM and on the UMM. The width w is

the number of memory banks and the latency l is the number
of time units to complete the memory access. Hence, the
performance of algorithms on the DMM and the UMM is
evaluated as a function of n (the size of a problem), p (the
number of threads), w (the width of a memory), and l (the
latency of a memory). In NVIDIA GPUs, the width w of
global and shared memory is 16 or 32. Also, the latency l of
the global memory is several hundreds clock cycles. A grid
can have at most 65535 blocks with at most 512 threads each
for CUDA Version 1.x and 231 − 1 blocks with at most 1024
threads each for CUDA Version 3.0 or later [10]. Thus, the
number p of threads can be 33 million for CUDA Version
1.x and much more for CUDA Version 3.0 or later.

Suppose that an array a of n numbers is given. The
prefix-sums of a is the array of size n such that the i-th
(0 ≤ i ≤ n − 1) element is a[0] + a[1] + · · · + a[i]. In this
paper, we consider the addition ’+’ as a binary operator for
the prefix-sums, but it can be generalized for any associative
binary operator. Clearly, a sequential algorithm can com-
pute the prefix-sums by executing a[i + 1]← a[i + 1] + a[i]
for all i (0 ≤ i ≤ n − 1) in turn. The computation of the
prefix-sums of an array is one of the most important algo-
rithmic procedures. Many algorithms such as graph algo-
rithms, geometric algorithms, image processing and matrix
computation call prefix-sum algorithms as a subroutine. For
example, the prefix-sums computation is used to obtain the
pre-order, the in-order, and the post-order of a rooted binary
tree in parallel [2]. So, it is very important to develop effi-
cient parallel algorithms for the prefix-sums.

Suppose that a matrix a of size
√

n × √n is given. Let
a[i][j] (0 ≤ i, j ≤ √n−1) denote the element at the i-th row
and j-th column. The summed area table [16] is a matrix b
of the same size such that b[i][j] =

∑
0≤i′≤i,0≤ j′≤ j a[i′][j′]. It

should have no difficulty to confirm that the summed area
table can be obtained by computing the column-wise prefix-
sums of the row-wise prefix-sums as illustrated in Figure 2.
Alternatively, we can compute the row-wise prefix-sums of
the column-wise prefix-sums to obtain the same matrix.

Once we have the summed area table, the sum of any
rectangular area of a can be computed in O(1) time. More
specifically, we have the following equation:

∑

u<i≤d,l< j≤r

a[i][j] = b[d][r] + b[u][l] − b[d][l] − b[u][r].

Thus, the sum of a rectangular area can be computed using
four elements of the summed area table b. Since the sum of a
rectangular area can be computed in O(1) time the summed
area table has many applications in the are of image process-
ing [17].

The main contribution of this paper is to show opti-
mal parallel algorithms computing the sum and the prefix-
sums on the DMM and the UMM. We first show that the
sum of n numbers can be computed in O(n

w
+ nl

p + l log n)
time units using p threads on the DMM and the UMM
with width w and latency l. We then go on to discuss the
lower bound of the time complexity and show three lower
bounds,Ω(n

w
)-time bandwidth limitation,Ω(nl

p)-time latency

NAKANO: OPTIMAL PARALLEL ALGORITHMS FOR COMPUTING THE SUM, THE PREFIX-SUMS, AND THE SUMMED AREA TABLE ON THE MEMORY MACHINE MODELS
3

1 2 2 1

1 3 1 2

2 1 1 1

3 1 1 2

row-wise
prefix-sums

column-wise
prefix-sums

1 3 5 6

1 4 5 7

2 3 4 5

3 4 5 7

1 3 5 6

2 7 10 13

4 10 14 18

7 14 19 25

Fig. 2 Summed area table

limitation, and Ω(l log n)-time reduction limitation. From
this discussion, the computation of the sum takes at least
Ω(n
w
+ nl

p + l log n) time units on the DMM and the UMM.
Thus, the sum algorithm is optimal. For the computation of
the prefix-sums, we first evaluate the computing time of a
well-known naive algorithm [4], [17]. We show that a naive
prefix-sums algorithm runs in O(n log n

w
+

nl log n
p +l log n) time.

Hence, this naive algorithm is not optimal and it has an over-
head of factor log n both for the bandwidth limitation n

w
and

for the latency limitation nl
p . Next, we show an optimal par-

allel algorithm that computes the prefix-sums of n numbers
in O(n

w +
nl
p + l log n) time units on the DMM and the UMM.

However, this algorithm uses work space of size n and it
may not be acceptable if the size n of the input is very large.
We also show that the prefix-sums can also be computed
in the same time units, even if work space can store only
min(p log p, wl log(wl)) numbers. Finally, we show that the
summed area table can be computed in O(n

w
+ nl

p + l log n)
time units on the DMM and the UMM.

Several techniques for computing the prefix-sums on
GPUs have been shown in [17]. They have presented a com-
plicated data routing technique to avoid the bank conflict in
the computation of the prefix-sums. However, their algo-
rithm performs memory access distant locations in parallel
and it performs non-coalesced memory access. Hence it is
not efficient for the UMM, that is, the global memory of
GPUs. In [17] a work-efficient parallel algorithm for prefix-
sums on the GPU has been presented. However, the algo-
rithm uses work space of n log n, and also the theoretical
analysis of the performance has not been presented.

This paper is organized as follows. Section 2 briefly
defines the Discrete Memory Machine (DMM) and the Uni-
fied Memory Machine (UMM) introduced in our previous
paper [13]. In Section 3, we evaluate the computing time of
the contiguous memory access the memory of the DMM and
the UMM. The contiguous memory access is a key ingre-
dient of parallel algorithm development on the DMM and
the UMM. Using the contiguous access, we show that the
sum of n numbers can be computed in O(n

w +
nl
p + l log n)

time units in Section 4. We then go on to discuss the
lower bound of the time complexity and show three lower
bounds,Ω(n

w
)-time bandwidth limitation,Ω(nl

p)-time latency
limitation, and Ω(l log n)-time reduction limitation in Sec-
tion 5. Section 6 shows a naive algorithm for the prefix-
sums, which runs in O(n log n

w +
nl log n

p + l log n) time units.
We then present an optimal parallel algorithm for the prefix-

sums running in O(n
w
+ nl

p + l log n) time units in Section 7.
Finally, we show that the summed area table can be com-
puted in O(n

w
+ nl

p + l log n) time units in Section 8. Section 9
offers conclusion of this paper.

2. Parallel Memory Machines: DMM and UMM

The main purpose of this section is to define the Discrete
Memory Machine (DMM) and the Unified Memory Ma-
chine (UMM) introduced in our previous paper [13]. Please
see [13] for the details.

We first define the Discrete Memory Machine (DMM)
of width w and latency l. Let m[i] (i ≥ 0) denote a memory
cell of address i in the memory. Let B[j] = {m[j],m[j +
w],m[j + 2w],m[j + 3w], . . .} (0 ≤ j ≤ w − 1) denote the
j-th bank of the memory. Clearly, a memory cell m[i] is
in the (i mod w)-th memory bank. We assume that memory
cells in different banks can be accessed in a time unit, but
no two memory cells in the same bank can be accessed in a
time unit. Also, we assume that l time units are necessary
to complete an access request and continuous requests are
processed in a pipeline fashion through the MMU. Thus, if
only one request is sent to a bank, l time units are necessary
to complete it. In general, it takes k + l − 1 time units to
complete k (≥ 1) access requests to a particular bank.

We assume that p threads on the DMM and the UMM
with width w are partitioned into p

w
groups of w threads

called warps. It makes sense to assume that p ≥ w and p is
a multiple of w. More specifically, p threads are partitioned
into p

w warps W(0),W(1), . . ., W(p
w − 1) such that W(i) =

{T(i ·w), T(i ·w+1), . . . , T((i+1) ·w−1)} (0 ≤ i ≤ p
w
−1). In

other words, the number of MBs and the number of threads
in a warp are equal. Warps are activated for memory access
in turn, and w threads in a warp try to access the memory at
the same time. In other words, W(0),W(1), . . . ,W(p

w
−1) are

activated in a round-robin manner if at least one thread in a
warp requests memory access. If no thread in a warp needs
memory access, such warp is not activated for memory ac-
cess. When W(i) is activated, w threads in W(i) sends mem-
ory access requests, one request per thread, to the memory.
We also assume that a thread cannot send a new memory
access request until the previous memory access request is
completed. Hence, if a thread send a memory access re-
quest, it must wait l time units to send a new memory access
request.

We next define the Unified Memory Machine (UMM)
of width w as follows. Let A[j] = {m[j · w],m[j · w +

4
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

1], . . . ,m[(j + 1) · w− 1]} denote the j-th address group. We
assume that memory cells in the same address group are pro-
cessed at the same time. However, if they are in the different
groups, one time unit is necessary for each of the groups.
Also, similarly to the DMM, p threads are partitioned into
warps and each warp accesses the memory in turn.

Figure 3 shows examples of memory access on the
DMM and the UMM. We can think that the memory access
is performed through l-stage pipeline registers as illustrated
in the figure. We assume that each memory access request
is completed when it reaches the last pipeline stage. Two
warps W(0) and W(1) access to 〈m[7],m[5],m[15],m[0]〉
and 〈m[10],m[11],m[12],m[9]〉, respectively. In the DMM,
memory access requests by W(0) are separated into two
pipeline stages, because addresses m[7] and m[15] are in
the same bank B(3). Those by W(1) occupies 1 stage, be-
cause all requests are in distinct banks. Thus, the memory
requests occupy three stages, it takes 3 + 5 − 1 = 7 time
units to complete the memory access. In the UMM, mem-
ory access requests by W(0) are destined for three address
groups. Hence the memory requests occupy three stages.
Similarly those by W(1) occupy two stages. Hence, it takes
5 + 5 − 1 = 9 time units to complete the memory access.

Throughout of this paper, without losing generality, we
assume that the width w of the DMM and the UMM, the
number p of the threads, and the size n of problem input
are powers of two. The reader should have no difficulty to
modify algorithms presented in this paper to work correctly
even if some of these values are not powers of two using
standard algorithmic techniques.

3. Contiguous Memory Access

The main purpose of this section is to review the contiguous
memory access on the DMM and the UMM shown in [13].

Suppose that an array a of size n (≥ p) is given. We
use p threads to access all of n elements in a such that each
thread accesses n

p elements. Note that “accessing” can be
“reading from” or “writing in.” Let a[i] (0 ≤ i ≤ n − 1)
denote the i-th element in a. When n ≥ p, the contiguous
access can be performed as follows:

[Contiguous memory access]
for t← 0 to n

p − 1 do
for i← 0 to p − 1 do in parallel

T (i) access a[p · t + i]

We will evaluate the computing time. For each t
(0 ≤ t ≤ n

p − 1), p threads access p elements a[pt], a[pt +
1], . . . , a[p(t + 1)− 1]. This memory access is performed by
p
w warps in turn. More specifically, first, w threads in W(0)
access a[pt], a[pt+1], . . . , a[pt+w−1]. After that, w threads
in W(1) access a[pt + w], a[pt + w + 1], . . . , a[pt + 2w − 1],
and the same operation is repeatedly performed. In general,
w threads in W(j) (0 ≤ j ≤ p

w
−1) accesses a[pt+ jw],a[pt+

jw + 1], . . . , a[pt + (j + 1)w − 1]. Since w elements are ac-
cessed by a warp are in the different bank, the access can

be completed in l time units on the DMM. Also, these w el-
ements are in the same address group, and thus, the access
can be completed in l time units on the UMM.

Recall that the memory access are processed in pipeline
fashion such that w threads in each W(j) send w memory
access requests in one time unit. Hence, p threads in p

w
warps send p memory access requests in p

w
time units. After

that, the last memory access requests by W(p
w
− 1) are com-

pleted in l− 1 time units. Thus, p threads access p elements
a[pt], a[pt + 1], . . . , a[p(t + 1) − 1] in p

w
+ l − 1 time units.

Since this memory access is repeated n
p times, the contigu-

ous access can be done in n
p · (p

w + l − 1) = O(n
w +

nl
p) time

units.
If n < p then, the contiguous memory access can be

simply done using n threads out of the p threads. If this is
the case, the memory access can be done by O(n

w
+ l) time

units. Therefore, we have,

Lemma 1: The contiguous access to an array of size n can
be done in O(n

w
+ nl

p + l) time units using p threads on the
UMM and the DMM with width w and latency l.

We can consider that memory access is contiguous if w
threads in every warp access the contiguous addresses of
the shared memory on the DMM or the global memory of
the UMM. It should have no difficulty to confirm that, if all
of the p threads performs such contiguous memory access
to n numbers, n

p numbers per thread, the memory access is

also completed in O(n
w +

nl
p + l) time units.

4. An optimal parallel algorithm for computing the
sum

The main purpose of this section is to show an optimal par-
allel algorithm for computing the sum on the memory ma-
chine models.

Let a be an array of n = 2m numbers. Let us show an
algorithm to compute the sum a[0]+a[1]+· · ·+a[n−1]. The
algorithm uses a well-known parallel computing technique
which repeatedly computes the pairwise sums. We imple-
ment this technique to perform contiguous memory access.
The details are spelled out as follows:

[Optimal algorithm for computing the sum]
for t← m − 1 downto 0 do

for i← 0 to 2t − 1 do in parallel
a[i]← a[i] + a[i + 2t]

Figure 4 illustrates how the sums of pairs are com-
puted. From the figure, the reader should have no difficulty
to confirm that this algorithm compute the sum correctly.

We assume that p threads are used to compute the sum.
For each t (0 ≤ t ≤ m− 1), 2t operations “a[i]← a[i]+ a[i+
2t]” are performed. These operation involve the following
memory access operations:

• reading from a[0],a[1], . . . , a[2 t − 1],
• reading from a[2 t], a[2t + 1], . . . , a[2 · 2t − 1], and
• writing in a[0],a[1], . . . , a[2t − 1].

NAKANO: OPTIMAL PARALLEL ALGORITHMS FOR COMPUTING THE SUM, THE PREFIX-SUMS, AND THE SUMMED AREA TABLE ON THE MEMORY MACHINE MODELS
5

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

l-stage pipeline registers

w

057 15

10 11 12 9

W(0)

W(1)UMM

0

5

715

10

11

12

9

l-stage pipeline registers

057 15

10 11 12 9

W(0)

W(1)DMM

0

5

715

10

11

12

9

B[0]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

w

A[0] A[1] A[2] A[3]

B[1]

B[2]

B[3]

Each pipeline stage stores
memory access requests
destined for the different
banks

Each pipeline stage stores
memory access requests
destined for the same address
group

Fig. 3 Examples of memory access on the DMM and the UMM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4 Illustrating the summing algorithm for n numbers

Since these memory access operations are contiguous, they
can be done in O(2t

w
+ 2t l

p + l) time using p threads both on
the DMM and on the UMM with width w and latency l from
Lemma 1. Thus, the total computing time is

m−1∑

t=0

O(
2t

w
+

2tl
p
+ l) = O(

2m

w
+

2ml
p
+ lm)

= O(
n
w
+

nl
p
+ l log n)

and we have,

Lemma 2: The sum of n numbers can be computed in
O(n
w +

nl
p + l log n) time units using p threads on the DMM

and on the UMM with width w and latency l.

5. The lower bound of the computing time and the la-
tency hiding

Let us discuss the lower bound of the time necessary to
compute the sum on the DMM and the UMM to show that
our parallel summing algorithm for Lemma 2 is optimal.
Since the sum is the last value of the prefix-sums and the
summed area table, this lower bound discussion for the sum

can be applied to that for the prefix-sums and the summed
area table. We will show three lower bounds of the sum,
Ω(n
w

)-time bandwidth limitation, Ω(nl
p)-time latency limita-

tion, and Ω(l log n)-time reduction limitation.
Since the width of the memory is w, at most w numbers

in the memory can be read in a time unit. Clearly, all of the
n numbers must be read to compute the sum. Hence, Ω(n

w)
time units are necessary to compute the sum. We call the
Ω(n
w)-time lower bound the bandwidth limitation.

Since the memory access takes latency l, a thread can
send at most t

l memory read requests in t time units. Thus, p
threads can send at most pt

l total memory requests in t time
units. Since at least n numbers in the memory must be read
to compute the sum, pt

l ≥ n must be satisfied. Thus, at least
t = Ω(nl

p) time units are necessary. We call the Ω(nl
p)-time

lower bound the latency limitation.
Next, we will show the reduction limitation, the

Ω(l log n)-time lower bound. The formal proof is more com-
plicated than those for the bandwidth limitation and the la-
tency limitation.

Imagine that each of n input numbers stored in the
shared memory (or the global memory) is a token and each
thread is a box. Whenever two tokens are placed in a box,

6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

they are merged into one immediately. We can move tokens
to boxes and each box can accept at most one token in l time
units. Suppose that we have n tokens outside boxes. We
will prove that it takes at least l log n time units to merge
them into one token. For this purpose, we will prove that, if
we have n′ tokens at some time, we must have at least n′

2 to-
kens l time units later. Suppose that we have n ′ tokens such
that k of them are in k boxes and the remaining n ′ − k tokens
are out of boxes. If k ≤ n′−k then we can move k tokens to k
boxes and can merge k pairs of tokens in l time units. After
that, n′ − k tokens remain. If k > n′ − k then we can merge
n′ − k pairs of tokens and we have k tokens after l time units.
Hence, after l time units, we have at least max(n ′ −k, k) ≥ n′

2

tokens. Thus, we must have at least n′
2 tokens l time units

later. In other words, it is not possible to reduce the num-
ber of tokens by half or less. Thus, it takes at least l log n
time units to merge n tokens into one. It should be clear
that, reading a number by a thread from the shared memory
(or the global memory) corresponds to a token movement
to a box. Therefore, it takes at least Ω(l log n) time units to
compute the sum of n numbers.

From the discussion above, we have,

Theorem 3: Both the DMM and the UMM with p threads,
width w, and latency l take at least Ω(n

w
+ nl

p + l log n) time
units to compute the sum of n numbers.

From Theorem 3, the parallel algorithm for commuting the
sum shown for Lemma 2 is optimal.

Let us discuss the relation of three limitations. From a
practical point of view, width w and latency l are constant
values that cannot be changed by parallel computer users.
These values are fixed when a parallel computer based on
the memory machine models is manufactured. Also, the
size n of the input are variable. Programmers can adjust the
number p of threads to obtain the best performance. Thus,
the value of the latency limitation nl

p can be changed by pro-
grammers.

Let us compare the values of three limitations.
wl ≤ p: From n

w
≥ nl

p , the bandwidth limitation dominates
the latency limitation.
wl ≤ n

log n: From n
w
≥ l log n, the bandwidth limitation dom-

inates the reduction limitation.
p ≤ n

log n : From nl
p ≥ l log n, the latency limitation domi-

nates the reduction limitation.
Thus, if both wl ≤ p and wl ≤ n

log n are satisfied, the
computing time of the sum algorithm for Lemma 2 is O(n

w
).

As illustrated in Figure 3, the memory machine models have
l-stage pipeline registers such that each stage has w regis-
ters. Since more than one memory requests by a thread can
not be stored in each pipeline register, wl ≤ p must be sat-
isfied to fill all the pipeline registers with memory access
requests by p threads. Since the sum algorithm has log n
stages and expected n

log n memory access requests are sent to
the pipeline registers, wl ≤ n

log n must also be satisfied to fill
all the pipeline registers with n

log n memory access requests.
From the discussion above, to hide the latency, the number

p of threads must be at least the number wl of pipeline reg-
isters and the size n of input must be at least wl log(wl).

6. A naive prefix-sums algorithm

We assume that an array a with n = 2m numbers is given.
Let us start with a well-known naive prefix-sums algorithm
for array a [17], [18], and show it is not optimal. The naive
prefix-sums algorithm is written as follows:

[A naive prefix-sums algorithm]
for t← 0 to m − 1 do

for i← 2t to n − 1 do in parallel
a[i]← a[i] + a[i − 2t]

Figure 5 illustrates how the prefix-sums are computed.
We assume that p threads are available and evaluate

the computing time of the naive prefix-sums algorithm. The
following three memory access operations are performed for
each t (0 ≤ t ≤ m − 1) by:

• reading from a[0],a[1], . . . , a[n − 2 t − 1],
• reading from a[2 t], a[2t + 1], . . . , a[n − 1], and
• writing in a[2t], a[2t + 1], . . . , a[n − 1].

Each of the three operations can be done by contiguous
memory access for n − 2t elements. Hence, the comput-
ing time of each t is O(n−2t

w
+

(n−2t)l
p + l) from Lemma 1. The

total computing time is:

m−1∑

t=0

O(
n − 2t

w
+

(n − 2t)l
p

+ l)

= O(
n log n
w
+

nl log n
p
+ l log n).

Thus, we have,

Lemma 4: The naive prefix-sum algorithm runs in
O(n log n

w
+

nl log n
p + l log n) time units using p threads on the

DMM and on the UMM with width w and latency l.

If the computing time of Lemma 4 matches the lower bound
shown in Theorem 3, the prefix-sum algorithm is optimal.
However, it does not match the lower bound. In the follow-
ing section, we will show an optimal prefix-sum algorithm
whose running time matches the lower bound.

7. Optimal prefix-sum algorithm

This section shows an optimal algorithm for the prefix-sums
running in O(n

w +
nl
p + l log n) time units. We use m arrays

a0, a1, . . .am−1 as work space. Each at (0 ≤ t ≤ m − 1) can
store 2t numbers. Thus, the total size of the m arrays is no
more than 20 + 21 + · · · + 2m−1 − 1 = 2m − 1 = n − 1. We
assume that the input of n numbers are stored in array a m of
size n.

The algorithm has two stages. In the first stage, in-
terval sums are stored in the m arrays. The second stage
uses interval sums in the m arrays to compute the resulting

NAKANO: OPTIMAL PARALLEL ALGORITHMS FOR COMPUTING THE SUM, THE PREFIX-SUMS, AND THE SUMMED AREA TABLE ON THE MEMORY MACHINE MODELS
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15

0 0-1 0-2 0-3 1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-12 10-13 11-14 12-15

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 1-8 2-9 3-10 4-11 5-12 6-13 7-14 8-15

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-15

Fig. 5 Illustrating the naive prefix-sums algorithm for n numbers

prefix-sums. The details of the first stage are spelled out as
follows.

[Compute the interval sums]
for t← m − 1 downto 0 do

for i← 0 to 2t − 1 do in parallel
at[i]← at+1[2 · i] + at+1[2 · i + 1]

Figure 6 illustrates how the interval sums are computed.
When this program terminates, each at[i] (0 ≤ t ≤ m−1, 0 ≤
i ≤ 2t−1) stores at[i · n

2t]+at[i · n
2t +1]+· · ·+at[(i+1)· n

2t −1].
In the second stage, the prefix-sums are computed by

computing the sums of the interval sums as follows:

[Compute the sums of the interval sums]
for t← 0 to m − 1 do

for i← 0 to 2t − 1 do in parallel
at+1[2 · i + 1]← at[i]

for i← 0 to 2t − 2 do in parallel
at+1[2 · i + 2]← at+1[2 · i + 2] + at[i]

Figure 7 shows how the prefix-sums are computed. In the
figure, “at+1[2 · i + 1]← at[i]” and “at+1[2 · i+ 2]← at+1[2 ·
i + 2] + at[i]” correspond to “copy” and “add”, respectively.

When this algorithm terminates, each am[i] (0 ≤ i ≤
2t − 1) stores the prefix-sum am[0]+ am[1]+ · · ·+ am[i]. We
assume that p threads are available and evaluate the com-
puting time. The first stage involves the following memory
access operations for each t (0 ≤ t ≤ m − 1):

• reading from at+1[0], at+1[2], . . . , at+1[2t+1 − 2],
• reading from at+1[1], at+1[3], . . . , at+1[2t+1 − 1], and
• writing in at[0], at[1], . . . , at[2t − 1].

Every two addresses is accessed in the reading operations.
Thus, these three memory access operations are essentially
contiguous access and they can be done in O(2t

w
+ 2t l

p + l) time
units. Therefore, the total computing time of the first stage
is

m−1∑

t=1

O(
2t

w
+

2tl
p
+ l) = O(

n
w
+

nl
p
+ l log n).

The second stage consists of the following memory access

operations for each t (0 ≤ t ≤ m − 1):

• reading from at[0], at[1], . . . , at[2t − 1],
• reading from at+1[2], at+1[4], . . . , at+1[2t+1 − 2], and
• writing in at+1[0], at+1[1], . . . , at+1[2t+1 − 1].

Similarly, these operations can be done in O(2t

w
+ 2t l

p + l) time
units. Hence, the total computing time of the second stage
is also O(n

w
+ nl

p + l log n). Thus, we have,

Theorem 5: The prefix-sums of n numbers can be com-
puted in O(n

w +
nl
p + l log n) time units using p threads on the

DMM and on the UMM with width w and latency l if work
space of size n is available.

From Theorem 3, the lower bound of the computing time of
the prefix-sums is Ω(n

w +
nl
p + l log n).

Suppose that n is very large and work space of size
n is not available. We will show that, if work space no
smaller than min(p log p, wl log(wl)) is available, the prefix-
sums can also be computed in O(n

w
+ nl

p + l log n). Let k be
an arbitrary number such that p ≤ k ≤ n. We partition the
input a with n numbers into n

k groups with k (≥ p) num-
bers each. Each t-th group (0 ≤ t ≤ n

k − 1) has k numbers
a[tk], a[tk + 1], . . . , a[(t+ 1)k− 1]. The prefix-sums of every
group is computed using p threads in turn as follows.

[Sequential-parallel prefix-sums algorithm]
for t← 0 to n

k − 1 do
begin

if(t � 0) a[tk]← a[tk] + a[tk − 1]
compute the prefix-sums of k numbers

a[tk], a[tk + 1], . . . , a[(t + 1)k − 1]
end

It should be clear that this algorithm computes the prefix-
sums correctly. The prefix-sums of k numbers can be com-
puted in O(k

w +
kl
p + l log k). Since the computation of the

prefix-sums is repeated n
k times, the total computing time is

O(k
w
+ kl

p + l log k) · n
k = O(n

w
+ nl

p +
nl log k

k). Thus, we have,

Corollary 6: The prefix-sums of n numbers can be com-
puted in O(n

w
+ nl

p +
nl log k

k) time units using p threads on the
DMM and on the UMM with width w and latency l if work
space of size k is available.

8
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0-1 2-3 4-5 6-7 8-9 10-11 12-13

0-3 4-7 8-11

0-7

a4

a3

a2

a1

14-15

12-15

8-15

0-15a0

Fig. 6 Illustrating the computation of interval sums in m arrays.

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-15

0-1 0-3 0-5 0-7 0-9 0-11 0-13

0-3 0-7 0-11

0-7

a4

a3

a2

a1

copy add

0-15

0-15

0-15

0-15a0

Fig. 7 Illustrating the computation of the sums of the interval sums in m arrays.

If k ≥ p log p then, nl log k
k ≤ nl log(p log p)

p log p = O(nl
p). If k ≥

wl log(wl) then nl log k
k ≤ nl log(wl log(wl))

wl log(wl) = O(n
w

). Thus, if k ≥
min(p log p, wl log(wl)) then the computing time is O(n

w
+

nl
p).

8. Optimal algorithms for the summed area table

The main purpose of this section is to show optimal algo-
rithms for computing the summed area table. It should be
clear that the column-wise prefix-sums can be obtained by
the transpose, the row-wise prefix-sums computation, and
the transpose. In our previous paper [13], we have presented
that the transpose of a matrix of size

√
n × √n can be done

in O(n
w
+ nl

p) time units both on the DMM and the UMM
with width w and latency l using p threads. As illustrated in
Figure 2 the summed area table can be computed by the row-
wise prefix-sums and the column-wise prefix-sums. Thus, if
the row-wise prefix-sums of a matrix of size

√
n × √n can

be computed in O(n
w
+ nl

p + l log n) time units, the summed
area table can be computed in the same time units.

For simplicity, we assume that
√

n is a power of
two. Recall that the algorithm for Theorem 5 computes the
prefix-sums of n numbers. Imagine that the this algorithm
is executed on a matrix of size

√
n × √n such that numbers

in a matrix arranged in a 1-dimensional array in row-major
order. We will show that the row-wise prefix-sums can be

computed by modifying the algorithm for Theorem 5, which
has following two stages:

Stage 1 the interval sums are computed as illustrated in Fig-
ure 6, and

Stage 2 the sums of the interval sums are computed as il-
lustrated in Figure 7.

The idea is to omit several operations performed in these two
stages such that the interval sums of a row is not propagated
to the next row. We can think that at (log n

2 ≤ t ≤ log n) in
these stages is a matrix of size

√
n× 2t√

n
such that at[i· 2t√

n
+ j]

(0 ≤ i ≤ √n−1, 0 ≤ j ≤ 2t√
n
−1) is an element in the i-th row

and j-th column. For example, the sizes of a4, a3, and a2 in
Figures 6 and 7 are 4×4, 4×2 and 4×1, respectively. Hence,
a4[0],a4[1],a4[2], a4[3], a3[0], a3[1], and a2[0] are in row 0.
We modify Stage 1 such that the interval sums within each
row is computed. For this purpose, we execute the first log n

2
(= m

2) steps of Stage 1 and the remaining m
2 steps are omitted

as follows:

[Compute the interval sums in row-wise]
for t← m − 1 downto m

2 do
for i← 0 to 2t − 1 do in parallel

at[i]← at+1[2 · i] + at+1[2 · i + 1]

For example, in Figure 6, a3 and a2 are computed, but the
computation of a1 and a0 is omitted.

NAKANO: OPTIMAL PARALLEL ALGORITHMS FOR COMPUTING THE SUM, THE PREFIX-SUMS, AND THE SUMMED AREA TABLE ON THE MEMORY MACHINE MODELS
9

0 0-1 0-2 0-3 4 4-5 4-6 4-7 8 8-9 8-10 8-11 12 12-13 12-14 12-15

0-1 0-3 4-5 4-7 8-9 8-11 12-13

0-3 4-7 8-11

a4

a3

a2

copy add

12-15

12-15

row 0 row 1 row 2 row 3

Fig. 8 Illustrating the computation of the sums of the interval sums of every row

Next, we modify Stage 2 such that the computation
is performed within each row. First, we omit the first m

2
steps and execute the remaining m

2 steps. In the remaining
m
2 steps, operations from a row to the next row are omit-
ted. The reader should compare Figure 7 and Figure 8 to see
how Stage 2 is modified. Note that all “copy” operations are
always performed within the same row. However, “add” op-
erations may be performed to next rows. For example, “add”
operation a3[2]← a3[2] + a2[0] is omitted because a3[2] is
in row 1 and a2[0] is in row 0. The details are spelled out as
follows:

[Compute the sums of the interval sums in row-wise]
for t← m

2 to m − 1 do
for i← 0 to 2t − 1 do in parallel

at+1[2 · i + 1]← at[i]
for i← 0 to 2t − 2 do in parallel

if at+1[2 · i + 2] and at[i] are in the same row then
at+1[2 · i + 2]← at+1[2 · i + 2] + at[i]

Clearly the computation of modified Stages 1 and 2
does not exceed their original stages shown for Theorem 5.
Thus, we have,

Theorem 7: The summed area table of a matrix of size√
n × √n can be computed in O(n

w
+ nl

p + l log n) time units
using p threads on the DMM and on the UMM with width
w and latency l, if work space of size n is available.

From Theorem 3, the parallel algorithm for Theorem 7 is
optimal.

9. Conclusion

The main contribution of this paper is to show parallel
algorithms to compute the sum, the prefix-sums, and the
summed area table in O(n

w
+ nl

p + l log n) time units using
p threads on the DMM and the UMM with width w and la-
tency l. We have also shown any algorithm to compute these
values takes Ω(n

w +
nl
p + l log n) time units.

We believe that two memory machine models, the
DMM and the UMM are promising as platforms of devel-
opment of algorithmic techniques for GPUs. We plan to
develop efficient algorithms for graph-theoretic problems,
geometric problems, and image processing problems on the
DMM and the UMM.

References

[1] A.V. Aho, J.D. Ullman, and J.E. Hopcroft, Data Structures and Al-
gorithms, Addison Wesley, 1983.

[2] A. Gibbons and W. Rytter, Efficient Parallel Algorithms, Cambridge
University Press, 1988.

[3] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to
Parallel Computing, Addison Wesley, 2003.

[4] M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-
Hill, 1994.

[5] W.W. Hwu, GPU Computing Gems Emerald Edition, Morgan Kauf-
mann, 2011.

[6] Y. Ito, K. Ogawa, and K. Nakano, “Fast ellipse detection algorithm
using Hough transform on the GPU,” Proc. of International Confer-
ence on Networking and Computing, pp.313–319, Dec. 2011.

[7] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of
computing euclidean distance map with efficient memory access,”
Proc. of International Conference on Networking and Computing,
pp.68–76, Dec. 2011.

[8] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” Proc. of Inter-
national Conference on Networking and Computing, pp.153–159,
Dec. 2011.

[9] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic pro-
gramming for the matrix chain product on the GPU,” Proc. of Inter-
national Conference on Networking and Computing, pp.320–326,
Dec. 2011.

[10] NVIDIA Corporation, “NVIDIA CUDA C programming guide ver-
sion 4.2,” 2012.

[11] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementa-
tions of a parallel algorithm for computing euclidean distance map in
multicore processors and GPUs,” International Journal of Network-
ing and Computing, vol.1, pp.260–276, July 2011.

[12] NVIDIA Corporation, “NVIDIA CUDA C best practice guide ver-
sion 3.1,” 2010.

[13] K. Nakano, “Simple memory machine models for GPUs,” Proc. of
International Parallel and Distributed Processing Symposium Work-
shops, pp.788–797, May 2012.

[14] A. Kasagi, K. Nakano, and Y. Ito, “An implementation of conflict-
free off-line permutation on the GPU,” to appear in Proc. of Inter-
national Conference on Networking and Computing, pp.226–232,
2012.

[15] M.J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol.C-21, pp.948–960, 1972.

[16] F. Crow, “Summed-area tables for texture mapping,” Proc. of the
11th annual conference on Computer graphics and interactive tech-
niques, pp.207–212, 1984.

[17] M. Harris, S. Sengupta, and J.D. Owens, “Chapter 39. parallel prefix
sum (scan) with CUDA,” in GPU Gems 3, Addison-Wesley, 2007.

[18] W.D. Hillis and G.L. Steele, Jr., “Data parallel algorithms,” Com-
mun. ACM, vol.29, no.12, pp.1170–1183, Dec. 1986.

10
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Koji Nakano received the BE, ME and Ph.D
degrees from Department of Computer Science,
Osaka University, Japan in 1987, 1989, and
1992 respectively. In 1992-1995, he was a Re-
search Scientist at Advanced Research Labora-
tory. Hitachi Ltd. In 1995, he joined Depart-
ment of Electrical and Computer Engineering,
Nagoya Institute of Technology. In 2001, he
moved to School of Information Science, Japan
Advanced Institute of Science and Technology,
where he was an associate professor. He has

been a full professor at School of Engineering, Hiroshima University from
2003. He has published extensively in journals, conference proceedings,
and book chapters. He served on the editorial board of journals including
IEEE Transactions on Parallel and Distributed Systems, IEICE Transac-
tions on Information and Systems, and International Journal of Foundations
on Computer Science. He has also guest-edited several special issues in-
cluding IEEE TPDS Special issue on Wireless Networks and Mobile Com-
puting, IJFCS special issue on Graph Algorithms and Applications, and
IEICE Transactions special issue on Foundations of Computer Science.
He has organized conferences and workshops including International Con-
ference on Networking and Computing, International Conference on Par-
allel and Distributed Computing, Applications and Technologies, IPDPS
Workshop on Advances in Parallel and Distributed Computational Models,
and ICPP Workshop on Wireless Networks and Mobile Computing. His
research interests includes image processing, hardware algorithms, GPU-
based computing, FPGA-based reconfigurable computing, parallel comput-
ing, algorithms and architectures.

