
An Optimal Parallel Algorithm for Computing the Summed Area Table on the GPU

Yutaro Emoto, Shunji Funasaka, Hiroki Tokura, Takumi Honda, Koji Nakano, and Yasuaki Ito
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The summed area table (SAT) of a matrix is a
data structure frequently used in the area of computer vision,
which can be obtained by computing the column-wise prefix-
sums and then the row-wise prefix-sums. The main contribution
of this paper is to present a very efficient parallel algorithm for
computing the SAT of a matrix stored in the global memory
of the GPU. Our new parallel algorithm uses two techniques,
single kernel soft synchronization and look back techniques
to compute the SAT efficiently. It performs approximately
one read and one write operations per element to the global
memory. Since all elements in the matrix must be read once,
and those in the resulting SAT must be written, any SAT
computation cannot be faster than duplication of the matrix in
the global memory. Thus, our algorithm is theoretically optimal
in terms of global memory access. We have implemented our
parallel algorithm and previously published algorithms for
computing the SAT to run on NVIDIA TITAN V GPU. Our
parallel SAT algorithm runs faster than all previous algorithms
for matrices of sizes from 256 × 256 to 32K × 32K. Also,
the overhead ratio over matrix duplication can be only 5.7%,
so it is also practically optimal.

I. INTRODUCTION

A. Background

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2]. Latest GPUs are designed for
general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many appli-
cation developers [1]. NVIDIA provides a parallel com-
puting architecture called CUDA (Compute Unified Device
Architecture) [3], the computing engine for NVIDIA GPUs.
CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient than
multicore processors [2], [4], [5], since they have hundreds
of processor cores and very high memory bandwidth.

A CUDA-enabled GPU has multiple steaming multipro-
cessors, each of which has processor cores, integer and
floating point operation units, shared memory, register file,
and L1 cache. A CUDA program running on a host PC
invokes one or more CUDA kernels executed on a GPU
one by one. Each CUDA kernel consists of one or more
CUDA blocks, each of which is a set of threads running on a
streaming multiprocessor. Further, threads in a CUDA block

global memory

shared memory

register file

streaming
multiprocessor

shared memory

register file

streaming
multiprocessor

shared memory

register file

streaming
multiprocessor

GPU architecture

CUDA programming model : CUDA kernel

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

Figure 1. CUDA programming model and GPU architecture

is partitioned into groups of w = 32 threads called warps.
Warps are dispatched to processor cores by schedulers,
and all w threads in the same warp execute the same
instruction. When a CUDA kernel is executed, CUDA blocks
are dispatched to streaming multiprocessors in turn. If the
number of CUDA blocks in a CUDA kernel running on a
GPU exceeds the total number of CUDA blocks as illustrated
in Figure 1, CUDA blocks that are not allocated in a
streaming multiprocessor wait for termination of a running
CUDA block. Since there is no explicit rule of CUDA block
assignment to streaming multiprocessors, we need to design
CUDA kernel programs so that they work correctly for any
CUDA block assignment to streaming multiprocessors by a
dispatcher. Hence, there is no direct way to communicate
between CUDA blocks in the same CUDA kernel.

CUDA programs can use two types of memories in
the GPU: the shared memory and the global memory [3].
Each streaming multiprocessor has the shared memory, an
extremely fast on-chip memory with lower capacity, say, 16-
96 Kbytes, and low latency. Every streaming multiproces-
sor shares the global memory implemented as an off-chip
DDR/GDDR DRAM or on-chip HBM2 DRAM with large

0 0 0 1 1 1 0 0 0

0 0 1 1 1 1 1 0 0

0 1 1 1 2 1 1 1 0

1 1 1 2 2 2 1 1 1

1 1 2 2 3 2 2 1 1

1 1 1 2 2 2 1 1 1

0 1 1 1 2 1 1 1 0

0 0 1 1 1 1 1 0 0

0 0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 2 2 2 1 0 0

0 1 2 3 4 3 2 1 0

1 2 3 5 6 5 3 2 1

2 3 5 7 9 7 5 3 2

3 4 6 9 11 9 6 4 3

3 5 7 10 13 10 7 5 3

3 5 8 11 14 11 8 5 3

3 5 8 12 15 12 8 5 3

input matrix summed area table (SAT)

0 0 0 1 2 3 3 3

0 0 1 3 5 7 8 8

0 1 3 6 10 15 16 16

1 3 6 11 22

2 5 10 26 33

3 7 22 33 42

3 15 55 60 63

8 16 60 65 68

3 8 16 63 68 71

25 38 48

27 41 52

28 43 55

25 27 28

38 41 43

48 52 55

3

8

13

17

17

13

8

3

column-wise prefix-sums row-wise prefix-sums

Figure 2. The summed area table (SAT) of a 9× 9 matrix

capacity, say, 1.5-12 Gbytes, but its access latency is quite
large. When CUDA block is dispatched to the streaming
multiprocessor, space of the shared memory is allocated to
it. Each CUDA block can access the allocated space, but
it cannot access the space allocated to the other CUDA
blocks. The efficient usage of the shared memory and the
global memory is a key for CUDA developers to accelerate
applications using GPUs. In particular, we need to consider
bank conflicts of shared memory access and coalescing of
global memory access [4], [3]. The address space of shared
memory is mapped into several physical memory banks. If
two or more threads in a warp access the same memory bank
at the same time, the access requests are processed in turn.
Hence, to maximize the memory access performance, CUDA
threads should access distinct memory banks to avoid bank
conflicts. Also, to maximize the bandwidth of the global
memory, threads in the same warp should perform coalesced
access.

The computation of prefix-sums is an important task in
the area of parallel computing [6]. Suppose that an array
p of size n is given. The prefix-sums of an array p is a
sequence of length n such that each i-th (0 ≤ i ≤ n − 1)
element is p[0] + p[1] + · · · + p[i]. Clearly, by executing
p[i]← p[i−1]+p[i] for all i (1 ≤ i ≤ n−1) in turn, an array
p stores the prefix-sums. The summed area table (SAT) [7],
[8], [9] is the prefix-sums extended to a 2-dimensional array
defined as follows. Let a be a matrix a of size

√
n×
√
n is

given. The SAT is a matrix b of the same size such that

b[i][j] =
∑

0≤i′≤i,0≤j′≤j

a[i′][j′].

It should have no difficulty to confirm that the SAT can
be obtained by computing the column-wise prefix-sums and
then the row-wise prefix-sums as illustrated in Figure 2.
Thus, the SAT of an n × n matrix can be computed in
O(n2) sequential time. Once we have the SAT, the sum of
any rectangular area of a can be computed by the following

formula∑
u<i≤d,l<j≤r

a[i][j] = b[d][r]− b[u][r]− b[d][l] + b[u][l].

Thus, the sum of any rectangular area in matrix a can be
computed using four elements of the SAT b. Since the sum
of any rectangular area can be computed in O(1) time, the
SAT has a lot of applications in the area of image processing
and computer vision [8].

B. The summed area table computation and related work

The SAT can be obtained by computing the column-wise
prefix-sums and then the row-wise prefix-sums of an input
matrix as illustrated in Figure 2. We can assign each of n
threads to a column and compute the prefix-sums of each
column sequentially by one thread. Clearly, each element is
read once and write once, n2 read and n2 write operations to
the global memory are performed. The row-wise prefix-sums
can be computed in the same way. This algorithm calls two
kernels with n threads for the column-wise and the row-
wise prefix-sum computation, and performs 2n2 read and
2n2 write operations. Since each element is read and written
two times each, we call this algorithm 2R2W algorithm. Note
that a matrix is arranged in row-major order of the memory
space, that is, each element a[i][j] (0 ≤ i, j ≤ n − 1)
at row i and column j is arranged in offset i · n + j of
the memory space for a. Thus, the column-wise prefix-
sum computation illustrated in Figure 2 performs coalesced
memory access, because n threads access to the same raw
at the same time. On the other hand, n threads in the row-
wise prefix-sum computation access to the same column at
the same time and so stride memory access is performed.
Hence, the running time of 2R2W algorithm is much larger
than that of matrix duplication. Also, the number of used
threads is small, it does not fully utilize memory access
bandwidth. For coalesced global memory access, we should
use one or more CUDA blocks for each row to compute

the prefix-sums, because elements in a row are consecutive.
By executing the 1-dimensional prefix-sum algorithm by
Merrill and Garland [10], [11] for every row, the row-wise
prefix-sums can be computed very efficiently. Further, we
can use a column-wise prefix-sum algorithm presented by
Tokura et al. [12] which also uses more threads. We call the
SAT algorithm using the prefix-sum algorithm by Merrill
and Garland [10], [11] and the column-wise prefix-sum
algorithm by Tokura et al. [12] 2R2W-optimal algorithm.

To reduce the global memory access, the shared memory
should be used as a cache. Nehab et al. [13] have presented a
tile-based SAT algorithm, that we call 2R1W algorithm. The
input matrix is partitioned into N2

W 2 tiles of size W×W each.
Usually, W is w = 32 or a small multiple of w, such that
all elements in a tile can be stored in the shared memory. It
executes three kernel calls, in which 2n2 +O(n

2

W) read and
n2+O(n

2

W) write operations are performed totally. Kasagi et
al. [14] have presented a global memory access optimal SAT
algorithm that we call 1R1W algorithm. Since it performs
only n2+O(n

2

W) read and n2+O(n
2

W) write operations, it is
optimal in terms of the global memory access. However, it
executes 2 n

W −1 kernel calls using fewer threads and the per-
formance is degraded due to overhead of many kernel calls
and low parallelism. To improve the performance, they also
presented (1+r)R1W algorithm, which is a hybrid of 2R1W
algorithm and 1R1W algorithm. Quite recently, Funasaka et
al. [15] have presented a global memory access optimal SAT
algorithm with single kernel soft synchronization (SKSS)
technique, that we call 1R1W-SKSS algorithm. It executes
only one kernel call and uses more threads than 1R1W
algorithm. However, tiles are processed from the top to the
bottom one by one, so parallelism is not high enough. Our
main contribution of this paper is to present a SAT algorithm
that we call 1R1W-SKSS-LB algorithm. It executes only one
kernel call with SKSS and look back (LB) technique. Since
our 1R1W-SKSS-LB algorithm assigns CUDA blocks to all
tiles, it uses much more threads than 1R1W-SKSS algorithm.
Thus, it runs faster than previously published SAT algorithm
including 1R1W-SKSS algorithm.

C. Our contribution

In this paper, we will present an almost optimal parallel
algorithm for computing the SAT on the GPU. We assume
that an input matrix a is stored in the global memory of
the GPU and the resulting SAT b must be written in the
global memory. The performance of a parallel algorithm is
evaluated by the running time necessary to write the SAT
b in the global memory from an input matrix a. Since all
elements in an input matrix a must be read and those in
the resulting matrix b must be written, any SAT algorithm
must issue n2 read and n2 write requests to the global
memory and the running time cannot be smaller than matrix
duplication of the same size. Thus, the time for matrix du-
plication is a lower bound of that for the SAT computation.

Since our parallel SAT algorithm that we call 1R1W-SKSS-
LB algorithm runs can be only 5.7% slower than matrix
duplication by cudaMemcpy() on NVIDIA TITAN V GPU,
it is practically optimal.

Table I summarizes parallel SAT algorithms for an n×n
input matrix. It shows the total number of kernel calls
(kernel calls, smaller is better), the maximum number of
used threads over all kernel calls (threads, larger is better),
the total number of read operations to the global memory
(global memory reads, smaller is better), and that of write
operations (global memory writes, smaller is better) for
each parallel algorithm. In the table, tile-based parallel
algorithms partitions an n × n input matrix into n2

W 2 tiles
of size W × W each and m is a parameter such that
a CUDA block with W 2

m threads (1 ≤ m ≤ W) are
assigned to each tile for SAT computation. We can select
the values of W and m that maximize the performance
by experiment. Further, we can classify SAT algorithm in
Table I in terms of the maximum number of used threads
as follows: low parallelism-n, medium parallelism-nWm , and
high parallelism-n

2

m . Note that n ≤ nW
m ≤ n2

m always holds
from W ≤ n and 1 ≤ m ≤ W . To hide memory access
latency to the shared/global memories and to fully utilize
hardware resources such as processor cores and memory
access bandwidth, memory access requests must be sent by
a lot of threads and parallelism must be high. Also, since
kernel calls have overheads to invoke CUDA blocks/threads
and following kernel call can start only after all threads
terminate, the number of kernel calls executed by a CUDA
program must be as small as possible. From Table I, we can
see that our 1R1W-SKSS-LB algorithm has more potential
than previously published algorithms from the theoretical
point of view.

This paper is organized as follows. Section II shows fun-
damental GPU techniques and algorithms to understand SAT
algorithms. In Section III, we go on to review previously
published tile-based SAT algorithms. Section IV presents our
1R1W-SKSS-LB algorithm. Finally, in Section V, we show
experimental results using NVIDIA TITAN V. Section VI
concludes our work.

II. FUNDAMENTAL GPU TECHNIQUES AND
ALGORITHMS

Let w = 32 denote the number of threads in a warp of
the GPU. We introduce the diagonal arrangement [16], [17]
to store a w × w matrix in the shared memory. Usually,
each a[i][j] (0 ≤ i, j ≤ w − 1) is arranged in offset
i · w + j in the shared memory. Since offset k is arranged
in bank k mod w, a[i][j] is stored in bank j. Thus, row-
wise access to w elements a[i][0], a[i][1], . . . , a[i][w−1] for
each i is conflict-free, because no two elements are arranged
in the same bank. On the other hand, column-wise access
to w elements a[0][j], a[1][j], . . . , a[j][w − 1] for each j is
destined for the same bank j. For conflict-free access, we

Table I
PARALLEL ALGORITHMS FOR COMPUTING THE SUMMED AREA TABLE

Parallel algorithms kernel calls threads parallelism global memory reads global memory writes
2R2W algorithm 2 n low 2n2 2n2

2R2W-optimal algorithm [10], [12] 2 n2

m
high 2n2 +O(n2) 2n2 +O(n2)

2R1W algorithm [13] 3 n2

m
high 2n2 +O(n

2

W
) n2 +O(n

2

W
)

1R1W algorithm [14] 2 n
W

− 1 nW
m

medium n2 +O(n
2

W
) n2 +O(n

2

W
)

(1 + r)R1W algorithm [14] 2(1−
√
r) n

W
+ 5 max(rn

2

2m
, nW

m
) medium (1 + r)n2 +O(n

2

W
) n2 +O(n

2

W
)

1R1W-SKSS algorithm [15] 1 nW
m

medium n2 +O(n
2

W
) n2 +O(n

2

W
)

Our 1R1W-SKSS-LB algorithm 1 n2

m
high n2 +O(n

2

W
) n2 +O(n

2

W
)

0, 0 0, 1 0, 2 0, 3

1, 3 1, 0 1, 1 1, 2

2, 2 2, 3 2, 0 2, 1

3, 1 3, 2 3, 3 3, 0

0 1 2 3

banks

Figure 3. The diagonal arrangement when w = 4

can use the diagonal arrangement, which arranges a[i][j] in
offset i ·w+(i+j) mod w. Row-wise access to w elements
a[i][0], a[i][1], . . . , a[0][w − 1] is still conflict-free, because
they are arranged in banks (i + 0) mod w, (i + 1) mod w,
. . ., (i + w − 1) mod w. In addition, column-wise access
to w elements a[0][j], a[1][j], . . . , a[w − 1][j] is conflict-
free, because they are arranged in banks (0 + j) mod w,
(1 + j) mod w, . . ., (w − 1 + j) mod w. Figure 3 shows
the diagonal arrangement when w = 4. We can see
that w elements a[1][0], a[1][1], a[1][2], and a[1][3] in the
same row are arranged in distinct banks, and w elements
a[0][1], a[1][1], a[2][1], and a[3][1] in the same column are
also stored in distinct banks. Thus, memory access by w
threads in a warp to the same row/column of a w×w matrix
in the shared memory is conflict-free if it is arranged in the
diagonal arrangement. Also, the diagonal arrangement can
be easily generalized to a W ×W matrix, where W is a
small multiple of w, such that any w consecutive elements
in the same row or column are arranged in distinct banks.

We show fundamental techniques to compute the SAT, the
column-wise/row-wise sums, and the sum of a matrix a of
size W ×W stored in the global memory by a CUDA block
efficiently. We assume that W is so small that a can be stored
in the shared memory. The SAT of a can be computed using
a CUDA block with W 2

m threads, where m is a parameter

(1 ≤ m ≤ W). The SAT can be computed as follows:
[Shared memory SAT algorithm]
Step 1 We copy matrix a in the global memory to the shared
memory in the diagonal arrangement using W 2

m threads.
More specifically, W 2

m threads are partitioned into W
m groups

of W threads each, and each group works for copying m
consecutive rows such that each thread copies m elements
in the same column.
Step 2 We use W threads and each thread i (0 ≤ i ≤W−1)
computes the prefix-sums of row i of the matrix sequentially.
Step 3 We use W threads and compute the column-wise
prefix-sums of the matrix in the same way.
Step 4 The resulting SAT is copied to the global memory
using W 2

m threads.
Note that, barrier synchronization call syncthreads() must
be executed after each of Steps 1, 2, and 3. Since the global
memory latency is large, we should use as many threads as
possible for Steps 1 and 2. On the other hand, the shared
memory latency is not large, the performance cannot be
improved even if we use more threads in Steps 2 and 3.
Actually, we have implemented a variety of algorithms for
the same task and we found that no algorithm can not be
better than this shared memory SAT algorithm.

Next, we will show an efficient GPU algorithm for com-
puting the column-wise and row-wise sums of a. Again, we
use a CUDA block with W 2

m threads (1 ≤ m ≤ W
2) and

compute the column-wise and row-wise sums as follows:
[Shared memory column-wise/row-wise sum algorithm]
Step 1 We copy matrix a in the global memory to the
shared memory in the diagonal arrangement using W 2

m

threads. Again, W 2

m threads are partitioned into W
m groups

of W threads each, and each group work for copying m
consecutive rows. During the copy operation, each group
computes the column-wise sums of assigned W

m rows at
the same time. The column-wise sums thus obtained can
be stored in an W

m ×W array in the shared memory.
Step 2 We use 2W threads such that column-wise sums and
row-wise sums of a are computed using W threads each. The
column-wise sums are obtained by computing the column-
wise sums of the W

m ×W array using W threads, and writes
them in the shared memory. At the same time, the row-wise

0 1 2 3 4 5 6 7

0 0-1 1-2 2-3 3-4 4-5 5-6 6-7

0 0-1 0-2 0-3 1-4 2-5 3-6 4-7

0 0-1 0-2 0-3 0-4 0-5 0-6 0-7

Figure 4. Warp prefix-sum algorithm when w = 8

sums of a in the shared memory can be computed using W
threads.
Note that, syncthreads() must be executed after Step 1.

The prefix-sums of an array a of size w = 32 can be
computed in log2 w = 5 iterations [18]. We assume that a
is stored in the registers of w threads such that each thread i
has a[i]. The prefix-sums can be computed by the following
algorithm:

[Warp prefix-sum algorithm]
for j ← 0 to log2 w − 1 do

for i← 0 to w − 1 do in parallel
if i ≥ 2j then thread i

performs a[i]← a[i] + a[i− 2j]

Each thread i must read a[i + 2j] stored in a register
of thread i + 2j . This can be done by a warp shuffle
function call shfl(), by which register values in threads
in the same warp can be exchanged directly [3]. Thus, this
algorithm runs very efficiently on the GPU. Figure 4 shows
computation performed by warp prefix-sum algorithm when
w = 8. From the figure, we can see that the prefix-sums
can be computed correctly. Since the last element a[w − 1]
stores the sum, this algorithm can also be used to compute
the sum.

III. PREVIOUSLY PUBLISHED TILE-BASED SAT
ALGORITHMS

This section reviews previously presented SAT algorithms.
Let S[U : D][L : R] denote the sum of a rectangular

region of an n× n matrix a such that

S[U : D][L : R] =

D∑
i′=U

R∑
j′=L

a[i′][j′].

Clearly, the SAT of a is a matrix s of the same size such that
s[i][j] = S[0 : i][0 : j] for all i and j (0 ≤ i, j ≤ n−1). We
partition matrix a into n2

W 2 tiles T (I, J) (0 ≤ I, J ≤ n
W −1)

of size W ×W such that T (I, J) has W 2 elements a[WI+
i][WJ+j] (0 ≤ i, j ≤W−1). For later reference, we define
the sums of various regions for each tile T (I, J) as shown
in Table II. Further, for reader’s benefits, Figure 5 illustrates

some of various sums in Table II. For example, GSAT(I, J)
is a W ×W matrix such that each (i, j) (0 ≤ i, j ≤W −1)
element is

S[0 : WI + i][0 : WJ + j] =

WI+i∑
i′=WI

WJ+j∑
j′=WJ

a[i′][j′].

Hence, computation of the SAT of a is completed if we have
GSAT(I, J) for all tiles T (I, J) (0 ≤ I, J ≤ n

W − 1).

A. 2R1W algorithm [13]

Following three kernel calls are performed by 2R1W
algorithm:
Kernel 1: Compute the LRS, LCS and LS of all tiles.
Kernel 2: Compute the GRS, GCS, and GS of all tiles, from
the LRS, LCS and LS.
Kernel 3: Compute the GSAT of all tiles from the GRS,
GCS, and GS.

Figure 6 illustrates an example of computation performed
by 2R1W algorithm. Kernel 1 performs shared memory
column-wise/row-wise sum algorithm to compute the LRS
and LCS. After that, it executes warp prefix-sum algorithm
for the LCS to compute the GS(I, J), and writes it in
the global memory. We can assume that, when Kernel 1
terminates, all values of both LRS and LCS can be stored
in an array of size n

W × n each so that W elements in
the LRS/LCS in the same tile are consecutive positions in
the same row of the array. Also, all values of LS can be
stored in an n

W ×
n
W array. In Kernel 2, GRS and GCS

can be obtained by computing the column-wise prefix-sums
of the LRS and LCS stored in n

W × n arrays using n
threads each. More specifically, each of n threads is assigned
to a column of the array and computes the prefix-sums
sequentially. Further, all values of GS can be obtained by
recursive computation for the SAT of the n

W ×
n
W array

storing values of LS. Alternatively, we can simply use 2R2W
algorithm for computing the GS. In Kernel 3, each CUDA
block executes shared memory SAT algorithm for T (I, J)
as follows. After Step 1 of the algorithm, GRS(I, J − 1),
GCS(I−1, J) and GS(I−1, J−1) are added to the leftmost
column, the topmost row and the top-left element of T (I, J)
in the shared memory, respectively. Steps 2, 3, and 4 are
executed as they are. Since the SAT obtained in Kernel 3 is
GSAT(I, J), 2R1W algorithm computes the SAT correctly.

B. 1R1W algorithm [14]

The SAT can be computed in 2 n
W − 1 kernel calls as

follows. In each Kernel K (0 ≤ K ≤ 2 n
W − 2), 1R1W

algorithm computes GSAT(I, J) with I + J = K. Figure 7
shows computation performed by Kernel 3 of 1R1W al-
gorithm, which computes GSAT(1, 2) and GSAT(2, 1). A
CUDA block assigned to T (I, J) basically performs shared
memory SAT algorithm as follows. After Step 1 is com-
pleted, GRS(I, J − 1), GCS(I − 1, J) and GS(I − 1, J − 1)
are added to the leftmost column, the topmost row, and the

Table II
VARIOUS SUMS FOR TILE T (I, J)

size notations values
Local Column-wise Sum (LCS) W LCS(I, J)[j] S[WI : WI +W − 1][WJ + j : WJ + j]
Local Row-wise Sum (LRS) W LRS(I, J)[i] S[WI + i : WI + i][WJ : WJ +W − 1]
Local Sum (LS) 1 LS(I, J) S[WI : WI +W − 1][WJ : WJ +W − 1]
Global Column-wise Sum (GCS) W GCS(I, J)[j] S[0 : WI +W − 1][WJ + j : WJ + j]
Global Row-wise Sum (GRS) W GRS(I, J)[i] S[WI + i : WI + i][0 : WJ +W − 1]
Global L-shape Sum (GLS) 1 GLS(I, J) GS(I, J)−GS(I − 1, J − 1)
Global Sum (GS) 1 GS(I, J) S[0 : WI +W − 1][0 : WJ +W − 1] = GSAT(I, J)[W − 1][W − 1]
Global Column-wise Prefix-sums (GCP) W GCP(I, J)[j] S[0 : WI +W − 1][0 : WJ + j]
Global Summed Area Table (GSAT) W ×W GSAT(I, J)[i][j] S[0 : WI + i][0 : WJ + j]

LRS LCS

GRS GCS GLS GS

LS

Figure 5. Illustrating various sums for tile T (I, J)

3

3

4

6

7

6

4

3

3

0

1

2

3

4

3

2

1

0

10433 6 7 6 4 3 319

3210 3 4 3 2 1 010

0 0 0

0 0 1

0 1 1

1 1 1

1 1 2

1 1 1

0 1 1

0 0 1

0 0 0

1 1 1

1 1 1

1 2 1

2 2 2

2 3 2

2 2 2

1 2 1

1 1 1

1 1 1

0 0 0

1 0 0

1 1 0

1 1 1

2 1 1

1 1 1

1 1 0

1 0 0

0 0 0

Kernel 1 Kernel 2 Kernel 3

LCS LRS LS GCS GRS GS GSAT

0 0 0

0 0 1

0 1 3

1 2 3

3 5 7

6 10 13

3 3 3

8 8 8

15 16 16

1 3 6

2 5 10

3 7 13

3 8 15

3 8 16

3 8 16

55 60 63

60 65 68

63 68 71

25 27 28

38 41 43

48 52 55

11 17 22

17 26 33

22 33 42

25 38 48

27 41 52

28 43 55

3

4

6

9

11

9

6

4

3

3210 3 4 3 2 1 013

0

1

2

3

4

3

2

1

0

13643 9 11 9 6 4 342

3

4

6

9

11

9

6

4

3

3210 3 4 3 2 1 013

0

1

2

3

4

3

2

1

0

13643 9 11 9 6 4 342

Figure 6. Tile-based 2R1W SAT algorithm for n = 9 and W = 3

top-left corner of T (I, J) in the shared memory, respectively.
By executing the following steps, GSAT(I, J) is computed
and copied to the global memory. Note that, we need to
write GRS(I, J), GCS(I, J), and GS(I, J) for Kernel K+1.
Clearly, GS(I, J) is the bottom-right corner of GSAT(I, J).
GRS(I, J) and GCS(I, J) can be obtained by subtracting
adjacent pairs in the rightmost column and the bottom row
of GSAT(I, J), respectively. Similarly to 2R1W algorithm,
we write GRS(I, J), GCS(I, J), and GS(I, J) in the global
memory.

We can accelerate 1R1W algorithm by a hybrid algorithm
with 2R1W algorithm. In 1R1W algorithm, Kernel K with
small or large K uses fewer CUDA blocks and so parallelism
is quite low. Hence, we use 2R1W SAT algorithm for tiles
processed by Kernel K with small or large K. We call it (1+
r)R1W SAT algorithm, where r (0 < r < 1) is a parameter.
As illustrated in Figure 8, we partition tiles into three groups
such that (A) T (I, J)s with I + J <

√
r n
W , (B) T (I, J)s

with
√
r n
W ≤ I + J < (2−

√
r) n

W , and (C) T (I, J)s with
(2−
√
r) n

W − 1 < I +J . In Figure 8, a parameter r = 0.25

11 17

17 26

0 0 0

0 0 1

0 1 3

1 3 6

2 5 10

3 7

3 8

3 8

3 8

1 2 3

3 5 7

6 10

3 3 3

8 8 8

22 33

13

15

16

16

22

33

15 16 16

42

9

11

2 3 3

9

1 2 1

1 1 1

1 1 1

1 1 1

2 1 1

1 1 1

9 11 9

2

1

0

13

13

13

25 38 48

27 41 52

28 43 55

25 13 10

2 1 1

1 1 1

25 4 4

13 1 1

10 1 1

25 29 33

38 43 48

48 54 60

GCS GRS GS GSAT

GSAT

Figure 7. Computation performed by Kernel 3 of Tile-based 1R1W SAT
algorithm.

2R1W

2R1W

1R1W

√
rn

W

n

(A)

(B)

(C)

Figure 8. (1 + r)R1W algorithm for r = 0.25

is applied. The hybrid algorithm uses 2R1W algorithm for
(A) and (C), and 1R1W algorithm is executed for (B). Since
2R1W algorithm is executed

√
r n
W (
√
r+1) n

W ≈ r n2

W 2 tiles
out of n2

W 2 tiles, it totally performs (1 + r)n2 +O(n
2

W) read
and n2 + O(n

2

W) write operations. We can choose the best
value of r that minimizes the running time.

C. 1R1W-SKSS algorithm [15]

Let column J (0 ≤ J ≤ n
W − 1) denote a column of

n
W tiles T (0, J), T (1, J), . . ., T (n

W − 1, J). We use n
W

CUDA blocks, each of which is assigned to a column. This
assignment is done by a global counter c in the global
memory initialized by zero as follows. A CUDA kernel
invokes n

W CUDA blocks and the first thread of every CUDA
block performs J ←atomicAdd(&c,1), which exclusively
increments c and returns the value of c before addition.
Thus, atomicAdd(&c,1) returns 0, 1, 2, . . . in turn and no
two threads receive the same return value. A CUDA block
with the first thread receiving return value J is assigned to
column J if J < n

W . It terminates if J ≥ n
W . After the

GSAT of every tile in column J is completed, it executes
J ←atomicAdd(&c,1) again and is assigned to column J
provided that J < n

W is satisfied. Otherwise, it terminates.
The same procedure is repeated until return value J satisfies
J ≥ n

W .
The algorithm uses an array R of flags initialized by zero

such that, after GRS(I, J) is written in the global memory 1
is written in R[I][J]. Each CUDA block assigned to column
J computes the GSAT of every tile in column J from top
to bottom. A CUDA block uses T (I, J), GRS(I, J − 1)
and GCP(I − 1, J) to compute GSAT(I, J). First, it copies
T (I, J) in the global memory to the shared memory. After
that, it repeats reading R[I][J − 1] until it stores 1. After
R[I][J − 1] stores 1, GRS(I, J − 1) is read and added to
the leftmost column of T (I, J). The row-wise prefix-sums
are computed and the rightmost column, which is equal
to GRS(I, J), is written in the global memory and 1 is
written in R[I][J]. Since GCP(I − 1, J) is the bottom row
of GSAT(I − 1, J), which the CUDA block has computed,
no global memory access is necessary to get GCP(I−1, J).
GCP(I − 1, J) is added to the topmost row of the resulting
matrix of row-wise prefix-sums and the column-wise prefix-
sums are computed. The resulting matrix is GSAT(I, J) and
it is written in the global memory.

IV. OUR 1R1W-SKSS-LB ALGORITHM

We show our 1R1W-SKSS-LB algorithm, which uses
single kernel soft synchronization (SKSS) technique and
look back (LB) technique. Similarly to 1R1W and 1R1W-
SKSS algorithm, a CUDA block is assigned to T (I, J) and
computes GSAT(I, J).

We assign serial numbers to tiles in diagonal-major or-
der as illustrated in Figure 9. More specifically, a serial
number (I+J)(I+J+1)

2 + I is assigned to each tile T (I, J)

(0 ≤ I, J ≤ n2

W 2 − 1). Figure 9 illustrates serial numbers
assigned to tiles when n

W = 5. All CUDA blocks are
assigned to tiles in the order of serial numbers. Similarly
to 1R1W-SKSS algorithm, we use atomicAdd function with
a global counter c initialized by zero in the global memory.
In 1R1W-SKSS-LB, each CUDA block is assigned to a tile
by the return value if it is less than n2

W 2 .
We will show the outline of GSAT(I, J) computation by

a CUDA block with multiple threads.
Step 1: T (I, J) is copied from the global memory to the
shared memory in the diagonal arrangement.
Step 2.A.1: LRS(I, J) is computed and written in the global
memory.
Step 2.A.2: GRS(I, J − 1) is computed.
Step 2.A.3: GRS(I, J) is computed and written in the global
memory.
Step 2.B.1: LCS(I, J) is computed and written in the global
memory.
Step 2.B.2: GCS(I − 1, J) is computed.
Step 2.B.3: GCS(I, J) is computed and written in the global

0 1 3 6 10

2 4 7 11 15

5 8 12 16 19

9 13 17 20 22

14 18 21 23 24

n

W

Figure 9. Serial numbers assigned to tiles

memory.
Step 3.1: GLS(I, J) is computed and written in the global
memory.
Step 3.2: GS(I − 1, J − 1) is computed.
Step 3.3: GS(I, J) is computed and written in the global
memory.
Step 4: GSAT(I, J) is computed and written in the global
memory.

Note that, LRS(I, J), GRS(I, J), LCS(I, J), GCS(I, J),
GLS(I, J), and GS(I, J) are written in the global memory,
because these values will be used by the other CUDA blocks.
Thus, we use two 8-bit integers R, and C initialized by zero
in the global memory to store the status of computation of
these steps for T (I, J) as follows:
R Integers 1, 2, 3, and 4 are written in R after

LRS(I, J), GRS(I, J), GLS(I, J) and GS(I, J)
are written in the global memory, respectively.

C Integers 1 and 2 are written in C after LCS(I, J)
and GCS(I, J) are written in the global memory,
respectively.

Since we have n2

W 2 tiles, 2 n2

W 2 8-bit integers are used in
total. For later reference, let R[I][J] and C[I][J] denote R
and C for tile T (I, J), respectively. By reading these two
8-bit integers, the other CUDA blocks can learn the status
of computation for GSAT(I, J).

Next, we will show how each step is performed by a
CUDA block. Steps 1, 2.A.1, and 2.B.1 can be done in
the same way as shared memory column-wise/row-wise
sum algorithm. Steps 2.A.2 and 2.B.2 use the look back
technique. In Step 2.A.2, the values of R are read leftwards
and GRS(I, J − 1) is obtained by computing the pairwise
sums of GRS(I, J ′), LRS(I, J ′ + 1), LRS(I, J ′ + 2), . . .,
LRS(I, J − 1) for some J ′ (0 ≤ J ′ ≤ J − 1) as illustrated
in Figure 10. For this purpose, R[I][J − 1] is repeatedly
read until it becomes 1 or larger. If R[I][J − 1] ≥ 2, then
Step 2.A.2 is completed by simply reading GRS(I, J−1). If
R[I][J − 1] = 1, then LRS(I, J − 1) is read and Step 2.A.2
is continued leftwards. Similarly, R[I][J − 2] is repeatedly

read until it becomes 1 or larger. If R[I][J − 2] ≥ 2, then
GRS(I, J−2) is read and the pairwise sums of GRS(I, J−
2) and LRS(I, J−1) are computed and written in the global
memory. If R[I][J−2] = 1, then the values of LRS(I, J−2)
are read and the pairwise sums of LRS(I, J − 2) and
LRS(I, J − 1) are computed. After that, R[I][J − 3] is read
similarly to obtain LRS(I, J − 3) or GRS(I, J − 3). The
same procedure is repeated leftwards until R[I][J ′] ≥ 2 and
GRS(I, J ′) is obtained for some J ′ (0 ≤ J ′ ≤ J−1). When
GRS(I, J ′) is obtained, the pairwise sums of GRS(I, J ′)
and LRS(I, J ′+1)+LRS(I, J ′+2)+ . . .+LRS(I, J − 1)
are computed. We can see that the resulting pairwise sums
are equal to GRS(I, J − 1) from Figure 10. This completes
Step 2.A.2. After the values of GRS(I, J −1) are obtained,
the pairwise sums GRS(I, J − 1) + LRS(I, J), which are
equal to GRS(I, J), are computed and written in the global
memory. This completes Step 2.A.3. Similarly, Steps 2.B.2,
and 2.B.3 can be done at the same time.

T (I, J)

LRS(I, J − 1)LRS(I, J ′ + 1)GRS(I, J ′)

Figure 10. Illustrating the computation of GRS(I, J − 1) by look back
technique in Step 2.A.2

In Step 3.1, the pairwise sums GRS(I, J−1)+GCS(I−
1, J)+LRS(I, J) are computed by W threads in an obvious
way, and the sum of the pairwise sums is computed by warp
prefix-sum algorithm and is written in the global memory.
From Figure 11, we can see that the sum of the pairwise
sums is equal to GLS(I, J). Step 3.2 can be done by the
look back technique similarly to Step 2.A.2. The idea is
to compute the sums of GS(I − k, J − k), GLS(I − k +
1, J − k + 1), GLS(I − k + 2, J − k + 2), . . ., GLS(I −
1, J−1) for some k (1 ≤ k ≤ min(I, J)), which is equal to
GS(I − 1, J − 1). By reading the status R(I − k, J − k) for
k = 1, 2, . . . ,min(I, J), we can obtain these values in the
same way as Step 2.A.2 by the look back technique. The
look back is repeated until GLS(I − k, J − k) is obtained
for some k (1 ≤ k ≤ min(I, J)). When GS(I−k, J −k) is
read, the values of GLS(I − k + 1, J − k + 1) + GLS(I −
k + 2, J − k + 2) + . . . + GLS(I − 1, J − 1) have been
already computed. Thus, they are added and the sum written
in the global memory. From Figure 11, we can see that the
written sum is GS(I − 1, J − 1). In Step 3.3, the sum of
GS(I−1, J−1) and GLS(I, J), which is equal to GS(I, J),
is computed and written in the global memory.

In Step 4, GSAT(I, J) is computed using GRS(I, J − 1),
GCS(I − 1, J), and GS(I − 1, J − 1) and written in the
global memory in the same way as 1R1W algorithm. Note
that a CUDA block must execute barrier synchronization

syncthreads() when Steps 1, 2, and 3 are completed. Thus,

GLS(I − k + 1, J − k + 1)

GS(I − k, J − k)

GLS(I − 1, J − 1)

GRS(I, J − 1)

GLS(I − 1, J)

LRS(I, J)

GS(I − 1, J − 1)

GLS(I, J)

Figure 11. Illustrating the computation of GLS(I, J) in Step 2.1 and
GS(I − 1, J − 1) in Step 2.2

only three barrier synchronization operations are performed.

V. EXPERIMENTAL RESULTS

We have implemented our 1R1W-SKSS-LB algorithm
using CUDA and evaluated the performance using NVIDIA
TITAN V GPU, which has 80 streaming multiprocessors
with 64 cores each. We have also implemented previously
published SAT algorithms, 2R2W, 2R2W-optimal, 2R1W,
1R1W, (1+ r)R1W, and 1R1W-SKSS algorithms, and eval-
uated the performance for comparison. Since the capacity of
global memory is 12Gbytes, we evaluated the performance
for 4-byte float matrices of up to 32K×32K, which occupies
4Gbytes. Since each CUDA block running on NVIDIA
TITAN V can have up to 96Kbytes shared memory, we
use parameter W = 32, 64, and 128. When W = 128,
4-byte float matrices of size 128×128 needs 64Kbytes. For
tile-based SAT algorithms, we use CUDA blocks with 1024
threads each to maximize parallelism.

Table III shows the running time in milliseconds of these
SAT algorithms for matrices of sizes from 256 × 256 to
32K×32K. It also shows the time for matrix duplication us-
ing cudaMemcpy() function call, which copies the specified
bytes between two memory area in the global memory. Thus,
the running time of any SAT algorithm cannot be faster than
that of cudaMemcpy(). In the table, the best running time
obtained by thee parameters W = 32, 64, and 128 for each
algorithm and matrix size is highlighted. Also, the overhead
in percent is computed for the best running time with respect
to the matrix duplication. In other words, the overhead of a
tile-based SAT algorithm is

(min(T32, T64, T128)−D)/D × 100

where TW is the running time for parameter W and D is
the matrix duplication time. From the table, we can see
that our 1R1W-SKSS-LB algorithm is the fastest and the
lowest overhead than previously published SAT algorithms
for all sizes of matrices. Our 1R1W-SKSS-LB algorithm
is also faster than 1R1W-SKSS algorithm, since look back
technique is performed efficiently.

Since the row-wise prefix-sum computation in 2R2W
algorithm performs stride access to the global memory the
running time of 2R2W algorithm is quite large. On the other
hand, 2R2W-optimal algorithm performs no stride memory
access and uses much more threads, it runs much faster than
2R2W algorithm. However, it performs at least 2 read and 2
write operations to the global memory, the overhead cannot
be smaller than 100%. Actually, from the table, we can see
that the overhead is larger than 100%, but it is very close
to 100% for large matrices. Thus, we can say that 2R2W-
optimal algorithm is optimal under the condition that the
SAT must be computed by the column-wise and row-wise
prefix-sums computation.

To attain the overhead below 100%, tile-based SAT al-
gorithms that use the shared memory as a cache to store
tiles of an input matrix are necessary. The overhead of
2R1W algorithm is more than 50% because it performs
at least 3 memory access operations per element, while
matrix duplication performs 2 memory access operations per
element.

No tile-based algorithm achieves overhead less than 100%
for matrices no larger than 512×512 due to low parallelism.
For example, if a tile-based SAT algorithm is executed for
a 256×256 input matrix with a 128×128 tiles, only 4 tiles
are processed by 4 CUDA blocks with 4096 threads totally.
Since NVIDIA TITAN V has 80 streaming multiprocessors,
at least 80 CUDA blocks should be invoked by kernels to
fully utilize hardware resources. Hence, the overhead is large
when the input matrix is small.

VI. CONCLUSION

We have presented a very efficient parallel algorithm that
computes the summed area table (SAT) of a matrix running
on a GPU. We have also implemented previously published
SAT algorithms and evaluated the performance on NVIDIA
TITAN V GPU. Our experimental results show that our SAT
algorithm runs faster than known SAT algorithms for all
matrices of sizes from 256 × 256 to 32K × 32K. Further,
the overhead of our parallel SAT algorithm over matrix
duplication can be only 5.7%, so it is practically optimal.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[2] H. Kouge, T. Honda, T. Fujita, Y. Ito, K. Nakano, and J. L.
Bordim, “Accelerating digital halftoning using the local ex-
haustive search on the GPU,” Concurrency and Computation:
Practice and Experience, vol. 29, no. 2, 2017.

Table III
THE RUNNING TIME IN MILLISECONDS AND THE OVERHEAD IN PERCENT OF PARALLEL SAT ALGORITHMS FOR MATRICES OF SIZES FROM 256× 256

TO 32K × 32K

Parallel algorithms W 2 2562 5122 1K2 2K2 4K2 8K2 16K2 32K2

matrix duplication by cudaMemcpy - 0.00512 0.00614 0.0165 0.0645 0.237 0.927 3.69 14.7
2R2W algorithm - 0.0901 0.167 0.338 1.01 2.57 8.47 24.4 87.1

overhead 1659.8% 2619.9% 1948.5% 1465.9% 984.4% 813.7% 561.2% 492.5%
2R2W-optimal algorithm - 0.0224 0.0224 0.0467 0.136 0.478 1.86 7.52 30.0

overhead 337.5% 264.8% 183.0% 110.9% 101.7% 100.6% 103.8% 104.1%
322 0.0191 0.0272 0.0669 0.182 0.577 2.04 7.88 30.9

2R1W algorithm [13] 642 0.0161 0.0191 0.0489 0.141 0.434 1.53 5.81 22.8
1282 0.0271 0.0284 0.0489 0.155 0.459 1.65 6.35 25.1

overhead 214.5% 211.1% 196.4% 118.6% 83.1% 65.0% 57.5% 55.1%
322 0.059 0.108 0.249 0.524 1.13 2.97 8.47 27.9

1R1W algorithm [14] 642 0.0363 0.0829 0.194 0.402 0.866 2.03 6.32 21.7
1282 0.0301 0.0653 0.195 0.417 0.890 2.02 6.23 21.0

overhead 487.9% 963.5% 1075.8% 523.%3 265.4% 117.%9 68.8% 42.9%
322 0.0453 0.0555 0.118 0.302 0.862 2.45 7.47 25.4

(1 + r)R1W algorithm [14] 642 0.0464 0.0582 0.0809 0.197 0.539 1.67 5.95 21.2
1282 0.0638 0.0709 0.0871 0.188 0.517 1.60 5.81 20.6

overhead 784.8% 803.9% 390.3% 191.5% 118.1% 72.6% 57.5% 40.1%
322 0.0298 0.0476 0.0692 0.128 0.387 1.20 4.55 17.5

1R1W-SKSS algorithm [15] 642 0.0298 0.0356 0.0606 0.136 0.330 1.15 4.26 16.4
1282 0.0409 0.0398 0.0753 0.124 0.319 1.14 4.18 16.2

overhead 482.0% 479.8% 267.3% 92.2% 34.6% 23.0% 13.3% 10.2%
322 0.0146 0.0209 0.0444 0.147 0.542 2.16 8.64 37.5

Our 1R1W-SKSS-LB algorithm 642 0.0126 0.0156 0.0266 0.0790 0.266 1.06 4.28 17.4
1282 0.0132 0.0136 0.0208 0.0753 0.258 0.980 3.92 15.8

overhead 146.1% 121.5% 26.%1 16.7% 8.9% 5.7% 6.2% 7.5%

[3] N. Corporation, “NVIDIA CUDA PC Programing Guide
Version 9.0,” Jan. 2018.

[4] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple-
mentations of a parallel algorithm for computing Euclidean
distance map in multicore processors and GPUs,” Interna-
tional Journal of Networking and Computing, vol. 1, no. 2,
pp. 260–276, July 2011.

[5] T. Fujita, K. Nakano, and Y. Ito, “Bitwise parallel bulk com-
putation on the GPU, with application to the CKY parsing for
context-free grammars,” in Proc. of International Parallel and
Distributed Processing Symposium Workshops, May 2016, pp.
589–598.

[6] A. Gibbons and W. Rytter, Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[7] F. Crow, “Summed-area tables for texture mapping,” in Proc.
of the 11th annual conference on Computer graphics and
interactive techniques, 1984, pp. 207–212.

[8] A. Lauritzen, “Chapter 8: Summed-area variance shadow
maps,” in GPU Gems 3. Addison-Wesley, 2007.

[9] K. Nakano, “Optimal parallel algorithms for computing the
sum, the prefix-sums, and the summed area table on the
memory machine models,” IEICE Trans. on Information and
Systems, vol. E96-D, no. 12, pp. 2626–2634, 2013.

[10] D. Merrill and M. Garland, “Single-pass parallel prefix scan
with decoupled look-back,” NVIDIA, Tech. Rep. NVR-2016-
002, March 2016.

[11] D. Merrill, “CUB : A library of warp-wide, block-
wide, and device-wide gpu parallel primitives,”
https://nvlabs.github.io/cub/, 2017.

[12] H. Tokura, T. Fujita, K. Nakano, Y. Ito, and J. L. Bordim,
“Almost optimal column-wise prefix-sum computation on the
GPU,” in The Journal of Supercomputing, 2018.

[13] D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe, “GPU-
efficient recursive filtering and summed-area tables,” ACM
Trans. Graph., vol. 30, no. 6, p. 176, 2011.

[14] A. Kasagi, K. Nakano, and Y. Ito, “Parallel algorithms for the
summed area table on the asynchronous hierarchical memory
machine, with GPU implementations,” in Proc. of Interna-
tional Conference on Parallel Processing (ICPP), Sept. 2014,
pp. 251–250.

[15] S. Funasaka, K. Nakano, and Y. Ito, “Single kernel soft
synchronization technique for task arrays on CUDA-enabled
GPUs, with applications,” in Proc. International Symposium
on Networking and Computing, Nov. 2017, pp. pp.11–20.

[16] K. Nakano, “Simple memory machine models for GPUs,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 29, no. 1, pp. 17–37, 2014.

[17] ——, “The hierarchical memory machine model for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops, May 2013, pp. 591–600.

[18] M. Harris, S. Sengupta, and J. D. Owens, “Chapter 39.
parallel prefix sum (scan) with CUDA,” in GPU Gems 3.
Addison-Wesley, 2007.

