
Sequential Memory Access on the Unified Memory
Machine with Application to the Dynamic

Programming
Koji Nakano

Department of Information Engineering
Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan
Email: nakano@cs.hiroshima-u.ac.jp

Abstract—The Unified Memory Machine (UMM) is a theoret-
ical parallel computing model that captures the essence of the
global memory access of GPUs. Although it is a good theoretical
model for GPU computing, the performance analysis of parallel
algorithms on it is sometimes complicated. The main contribution
of this paper is to provide a useful gadget, the sequential memory
access, that makes the computing time evaluation easy, and to
show its application to the dynamic programming. The sequential
memory access has two parameters: length � and fragmentation
� . We first show that the sequential memory access of length �
with fragmentation � can be done in �� �

�
� ��

�
� � � �� time

units using � threads on the UMM with width � and latency
�. We next show that the dynamic programming to solve the
optimal polygon triangulation problem can be implemented in
the UMM using the sequential memory access. The resulting
implementation for a convex �-gon runs in ���

�

�
� ���

�
���� time

units using � threads on the UMM with width � and latency �. We
also prove that any implementation of the dynamic programming
needs ���

�

�
� ���

�
� ��� time units. Thus, our implementation is

time optimal.

Keywords-Dynamic programming, parallel algorithms, mem-
ory machine models, coalesced memory access, GPU, CUDA

I. INTRODUCTION

A. Background

The research of parallel algorithms has a long history of
more than 40 years. Sequential algorithms have been devel-
oped mostly on the Random Access Machine (RAM) [1].
In contrast, since there are a variety of connection methods
and patterns between processors and memories, many parallel
computing models have been presented and many parallel
algorithmic techniques have been shown on them. The most
well-studied parallel computing model is the Parallel Random
Access Machine (PRAM) [2], [3], [4], [5], which consists
of processors and a shared memory. Each processor on the
PRAM can access any address of the shared memory in a
time unit. The PRAM is a good parallel computing model in
the sense that parallelism of each problem can be revealed
by the performance of parallel algorithms on the PRAM.
However, since the PRAM requires a shared memory that
can be accessed by all processors at the same time, it is not
feasible.

The GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manip-
ulating images [6], [7], [8]. Latest GPUs are designed for
general purpose computing and can perform computation in
applications traditionally handled by the CPU. Hence, GPUs
have recently attracted the attention of many application
developers [6], [9], [10], [11], [12]. NVIDIA provides a par-
allel computing architecture called CUDA (Compute Unified
Device Architecture) [13], the computing engine for NVIDIA
GPUs. CUDA gives developers access to the virtual instruction
set and memory of the parallel computational elements in
NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [14], since they have hundreds of
processor cores and very high memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs:
the shared memory and the global memory [13]. The shared
memory is an extremely fast on-chip memory with lower ca-
pacity, say, 16-64 Kbytes. The global memory is implemented
as an off-chip DRAM, and thus, it has large capacity, say, 1.5-6
Gbytes, but its access latency is very long. The efficient usage
of the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory ac-
cess [11], [14], [15]. The address space of the shared memory
is mapped into several physical memory banks. If two or more
threads access the same memory banks at the same time, the
access requests are processed in turn. Hence, to maximize
the memory access performance, threads of CUDA should
access distinct memory banks to avoid the bank conflicts of
the memory accesses. To maximize the bandwidth between
the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed at the same time. Thus,
CUDA threads should perform coalesced access when they
access the global memory.

The most well-studied parallel computing model is the
Parallel Random Access Machine (PRAM) [2], [3], [4], [5],
which consists of processors and a shared memory. Each
processor on the PRAM can access any address of the shared
memory in a time unit. The PRAM is a good parallel com-
puting model in the sense that parallelism of each problem

can be revealed by the performance of parallel algorithms
on the PRAM. Although GPUs have the shared memory
and the global memory accessed by multiple threads, parallel
algorithms developed for the PRAM may not achieve good
performance on GPUs. We should consider the memory access
characteristics such as the bank conflicts and the coalescing
when we develop efficient parallel algorithms for GPUs. There
are several previously published works that aim to present
theoretical practical parallel computing models capturing the
essence of parallel computers. Many researchers have been
devoted to developing efficient parallel algorithms to find
algorithmic techniques on such parallel computing models. For
example, processors connected by interconnection networks
such as hypercubes, meshes, trees, among others [16], bulk
synchronous models [17], LogP models [18], reconfigurable
models [19], among others. Quite recently, the memory ma-
chine models [20] have been presented for theoretical parallel
computing models for CUDA-enabled GPUs.

B. Memory Machine Models

In our previous paper [20], we have introduced two models,
the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM), which reflect the essential features of
the shared memory and the global memory of CUDA-enabled
GPUs. Since the DMM and the UMM are promising as theo-
retical computing models for GPUs, we have published several
efficient algorithms on the DMM and the UMM [21], [22],
[23], [24]. For example, in our previous paper [20], we have
presented offline permutation algorithms on the DMM and
the UMM. We have also implemented the offline permutation
algorithm on NVIDIA GeForce GTX-680 and showed that
theoretical analysis of the performance on the DMM provides
very good approximation of the CUDA C implementation of
the offline permutation algorithm [21]. These results imply that
the DMM is a good theoretical model for computation using
the shared memory on GPUs. Later, we have introduced the
Hierarchical Memory Machine (HMM) [25], which captures
the essence of the hierarchical architecture of the CUDA-
enabled GPU. The HMM has multiple DMMs, each of which
corresponds to a streaming multiple-processor on a GPU. It
also has a global memory which can be accessed by all threads
in DMMs. Since all threads share a global memory, we can
think it is a UMM. In [26], we have shown an approximate
string matching algorithm on the HMM and implemented it on
the HMM. In [27], we have presented an offline permutation
algorithm on the HMM and evaluated its performance on
the CUDA-enabled GPU. The implementation results show
that that theoretical analysis of the performance on the HMM
provides very good approximation of the actual running time.
However, performance analysis of parallel algorithms on the
Memory Machine Models including the DMM, the UMM, and
the HMM is sometimes complicated and difficult.

The DMM and the UMM have three parameters: the number
� of threads, width �, and memory access latency �. Figure 1
illustrates the outline of the architectures of the DMM and the
UMM with � � �� threads and width � � �. Each thread

is a Random Access Machine (RAM) [1], which can execute
fundamental operations in a time unit. Threads are executed in
SIMD [28] fashion, and run on the same program and work on
the different data. The � threads are partitioned into �

�
groups

of � threads each called warp. The �
�

warps are dispatched for
memory access in turn, and � threads in a dispatched warp
send memory access requests to the memory banks (MBs)
through the memory management unit (MMU). We do not
discuss the architecture of the MMU, but we can think that
it is a multistage interconnection network in which memory
access requests are moved to destination memory banks in
a pipeline fashion. Note that the DMM and the UMM with
width � has � memory banks and each warp has � threads.
For example, the DMM and the UMM in Figure 1 have 4
threads in each warp and 4 MBs.

T T T T

T T T T

T T T T

T T T T

T T T T

MMU

MB MB MB MB

T T T T

T T T T

T T T T

T T T T

T T T T

MMU

MB MB MB MB

address line data line
T: Tread W: Warp
MB: Memory Bank
MMU: Memory Management Unit

W

W

W

W

W

W

W

W

W

W

DMM UMM

Fig. 1. The architectures of the DMM and the UMM with width � � �

MBs constitute a single address space of the memory. A
single address space of the memory is mapped to the MBs
in an interleaved way such that the word of data of address
� is stored in the �� ��� �	-th bank �
��, where � is the
number of MBs. The main difference of the two architectures
is the connection of the address line between the MMU and the
MBs, which can transfer an address value. In the DMM, the
address lines connect the MBs and the MMU separately, while
a single set of address lines from the MMU is connected to
the MBs in the UMM. Hence, in the UMM, the same address
value is broadcast to every MB, and the same address of the
MBs can be accessed in each time unit. On the other hand,
different addresses of the MBs can be accessed in the DMM.
Since the memory access of the UMM is more restricted than
that of the DMM, the UMM is less powerful than the DMM.
Also, we assume that MBs are accessed in a pipeline fashion
with latency �. In other words, if a thread sends a memory
access request, it takes at least � time units to complete it. A
thread can send a new memory access request only after the
completion of the previous memory access request and thus,

it can send at most one memory access request in � time units.
Let us clarify the difference of the DMM and the UMM

using the bank groups and the address groups. Figure 2
illustrates the memory banks and the address groups. Let
�
�� � ��� � � �� � � ��� � � �� � � �� (� � � � � � �)
denote the �-th memory bank. Also, let 	
�� � �� ��� � ���
�� � � � � �� � �	 � � � �� denote the �-th address group. In the
DMM, if multiple memory access requests are destined for
the same memory bank, they are processed sequentially. In
the UMM, memory access requests are destined for different
address groups, they are processed separately.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

memory banks

����

����

����

����

���� ���� ���� ����

address groups of UMM

Fig. 2. The memory banks and the address group of the DMM and the
UMM for � � � banks

The performance of algorithms of the PRAM is usually
evaluated using two parameters: the size
 of the input and
the number � of processors. For example, it is well known
that the sum of
 numbers can be computed in �� �

�
� ���
	

time on the PRAM [2]. We will use four parameters, the size

 of the input, the number � of threads, the width � and the
latency � of the memory when we evaluate the performance
of algorithms on the DMM and on the UMM. The width �

is the number of memory banks as well as the number of
threads in a warp. The latency � is the number of time units
to complete the memory access. For example, we have shown
in [24] that the prefix-sums of
 numbers can be computed
in �� �

�
� ��

�
� � ���
	 time units. In latest CUDA-enabled

GPUs, the width � of the shared memory is 32, and that of
the global memory is 256-384 bits. Also, the latency � of the
shared memory is very small, while that of the global memory
is several hundred clock cycles. In CUDA, a grid can have at
most 65535 blocks with at most 1024 threads each [13]. Thus,
the number � of threads can be 65 million.

C. Our contribution

Although the DMM and the UMM are good theoretical
models for GPU computing, the performance analysis of
parallel algorithms on it is not easy. The main contribution
of this paper is to provide a useful gadget, the sequential
memory access that makes the computing time evaluation on
the UMM easy. In the sequential memory access, � threads on
the UMM access
 addresses such that each thread accesses
�
�

addresses in turn. The memory access can be either read
or write. The sequential memory access has two parameters:

length
 and fragmentation value � . Figure 3 illustrates an
example of sequential memory access of length 12 by 12
threads. We say that a pair of two adjacent memory access
requests is a gap, if it is not adjacent in the address space. For
example, the sequential memory access in Figure 3 has two
gaps: memory access by threads 3 and 4, and that by 6 and
7. The fragmentation of the sequential memory access is the
number of gaps. We show that the sequential memory access of
length
 with fragmentation � can be done in �� �

�
� ��

�
����	

time units using � threads on the UMM with width � and
latency �.

threads

0 1 2 3 4 5 6 7 8 9 10 11

memory

Fig. 3. An example of sequential memory access

The dynamic programming is an important and sophisticated
algorithmic technique to find an optimal solution of a problem
over an exponential number of solution candidates [29]. A
naive solution for such problem needs exponential time. The
key idea behind the dynamic programming is to:

� partition a problem into subproblems,
� solve the subproblems independently, and
� combine the solution of the subproblems

to reach an overall solution. The dynamic programming en-
ables us to solve such problems in polynomial time. For
example, the longest common subsequence problem, which
requires finding the longest common subsequence of given two
sequences, can be solved by the dynamic programming [30].
Since a sequence has an exponential number of subsequences,
a straightforward algorithm takes an exponential time to find
the longest common subsequence. However, it is known that
this problem can be solved in ��
	 time by the dynamic
programming, where and
 are the lengths of two se-
quences. Many important problems including the edit distance
problem, the matrix chain product problem, and the optimal
polygon triangulation problem can be solved by the dynamic
programming [29].

The second contribution of this paper is to show that
the dynamic programming for solving the optimal polygon
triangulation problem can be implemented using the sequential
memory access. In the optimal polygon triangulation problem,
a convex
-gon with each chord being assigned a weight
is given. The problem is to find a triangulation (i.e. a set
of
 � non-crossing chords) with minimum total weight.
Figure 4 shows an example of the input convex 8-gon of
nodes ��� ��� � � � � �� with each chord ���� having weight ��	� .
It also shows the optimal triangulation with total weight 6. It
is known that the optimal polygon triangulation problem for a
convex
-gon can be solved in ��
�	 time using the dynamic

programming technique [11], [29], [31], [32]. As far as we
know, there is no previously published algorithm running faster
than ��
�	 time.

Since a straightforward algorithm takes an exponential time,
this problem is often used to introduce the dynamic pro-
gramming technique. Although this algorithm is efficient, the
memory access operation is complicated. To find an efficient
implementation of the dynamic programming is not an easy
task.

�

�

�

�
�

�

�

�

1

1

1

2

1

� 3 4 5 6

�

2

4

1

3

3

1

1

0

1

2

3

4

5

3

4

5

2

3

3

2

4

1

2

2

5

5

1

0

7

����

Fig. 4. An example of a triangulation of a convex 8-gon

We will show that the optimal polygon triangulation prob-
lem can be solved using the sequential memory access. Our
implementation for a convex
-gon runs in �� �

�

�
� ���

�
�
�	

time units using � threads on the UMM with width � and
latency �. We also prove that the optimal polygon triangulation
problem needs �� �

�

�
� ���

�
�
�	 time units as log as the

dynamic programming technique is used. Thus, our imple-
mentation is time optimal.

There are several published works on the implementation
of the dynamic programming [11], [10], [33], [34], [35].
Their implementations have been optimized mainly by the
developer’s experience. Hence, these implementations are very
complicated and they have no concrete theoretical analysis
of the performance. Although the experimental results have
been presented, the optimality of the implementation has not
been shown. Actually, it can be proved that some of the
presented implementations are not optimal from the theoretical
point of view. The performance of the implementation on
the GPUs depends on a lot of factors, say, programmer’s
skill, compiler version and optimization option, GPU model
numbers, host PC performance, etc. It is very hard to compare
the experimental results and hence the theoretical analysis
independent of them is very important. Our contribution is
the first work that presents a parallel implementation for the
dynamic programming for the optimal polygon triangulation
problem guaranteed to be optimal by the theoretical analysis.

The rest of this paper is organized as follows: In Section II,
we define the Unified Memory Machine (UMM) and the
sequential memory access. We also evaluate the performance
of the sequential memory access on the UMM. Section III
defines the optimal triangulation problem (OPT problem) and
review the dynamic programming for solving this problem.
In Section IV, we show an implementation of the dynamic
programming for solving the OPT problem in the UMM.

Section V evaluates the computing time of the implementation
using the sequential memory access. It also proves the time
optimality of our implementation. Section VI concludes our
work.

II. THE UNIFIED MEMORY MACHINE (UMM) AND THE

SEQUENTIAL MEMORY ACCESS

The main purpose of this section is to define the Unified
Memory Machine (UMM) [20]. The reader should refer to [20]
for the details of the the UMM. It also defines the sequential
memory access and evaluates its running time on the UMM.

Let us define the UMM with width � and latency �. Let
��
(� � �) denote the memory cell with address �. The memory
of the UMM is partitioned into address groups 	
��� 	
��� � � �
such that each 	
�� (� � �) stores
� ���,
� �� ���, � � �,

�� � �	 � � � ��. The reader should refer to Figure 2 that
illustrates address groups for � � �. Also, the memory access
is performed through �-stage pipeline registers as illustrated
in 5. Let � be the number of threads of the UMM and � ��	,
� ��	, � � �, � �� � �	 be the � threads. We assume that � is
a multiple of �. The � threads are partitioned into �

�
groups

called warps with � threads each. More specifically, � threads
are partitioned into �

�
warps � ��	�� ��	, � � �, � � �

�
��	 such

that � ��	 � �� �� � �	� � �� � � � �	� � � � � � ���� �	 � � � �	�.
Warps are dispatched for memory access in turn, and � threads
in a warp try to access the memory in the same time. More
specifically, � ��	�� ��	� � � � �� � �

�
� �	 are dispatched in a

round-robin manner if at least one thread in a warp requests
memory access. If no thread in a warp needs memory access,
such warp is not dispatched for memory access. When � ��	
is dispatched, � thread in � ��	 send memory access requests,
one request per thread, to the memory banks.

For the memory access, each warp sends memory access
requests to the memory banks through the �-stage pipeline
registers. We assume that each stage can store the memory
access requests destined for the same address group. For
example, since the memory access requests by � ��	 are
separated in three address groups in the figure, they occupy
three stages of the pipeline registers. Also, those by � ��	
are in the same address group, they occupy only one stage.
In general, if memory access requests by a warp are destined
for � address groups, they occupy � stages. For simplicity,
we assume that the memory access is completed as soon as
the request reaches the last pipeline stage. Thus, all memory
access requests by � ��	 and � ��	 in the figure are completed
in �address groups	� ��address group	� ��latency	� � � �
time units. We also assume that a thread cannot send a new
memory access request until the previous memory access
request is completed. Hence, if a thread sends a memory access
request, it must wait at least � time units to send a new memory
access request.

We also assume that, if two or more threads access the same
address, the memory access requests are processed as a single
request. If multiple memory read requests are destined for the
same address, the value stored in the address is broadcast to the
source threads. If multiple memory write requests are sent to

0

1

2

3

4

5

6

7

12

13

14

15

���� ���� ���� ����� � 	

5-stage pipeline regsiters

�
��

�
��

3 4 6 12

3

4

6

12

10 11 8 9

8

9

10

11

8

9

10

11

memory2 warps

� � �

Fig. 5. The UMM with width � � � and latency � � �

the same address, then one of them is arbitrarily selected and
its writing operation is performed. The other writing requests
to the same address are removed. Thus, the UMM works as
the Concurrent Read Concurrent Write (CRCW) mode with
arbitrary resolution of simultaneous writing [2]. From the
function of CUDA [13], these assumptions make sense.

Let ��� ��� � � � � ���� be a sequence of
 addresses accessed
by threads on the UMM. We say that a pair of two addresses
�� and ��� (� � � �
 � �) of adjacent access requests
is a gap if ��� � ���� � �. Clearly, it is not a gap if they
are adjacent in the address space or the same address, that
is, ��� � ���� � �. We say that the number of gaps is the
fragmentation of the sequence. For example, if � � � � for all
� then its fragmentation is 0. If �� � �� then its fragmentation
is
� �.

The sequential memory access is a memory access operation
for a sequence of
 addresses such that � threads on the UMM
access �

�
addresses each as follows:

[Sequential Memory Access]
for �� � to 	�

�

 � � do

for �� � to �� � do in parallel
� ��	 accesses
����� if � � �� � �
.

Note that “accesses” can be either “reads from” or “writes in”.
However, “reads from” and “writes in” cannot be mixed. Thus,
the sequential memory access must be either the sequential
memory read or the sequential memory write. Hence, it is not
possible to copy
�� � to
��� by executing the sequential
memory access once even if � � �.

Let us evaluate the time for the sequential memory access
of length
 with fragmentation � . First, we assume that � �
.
Recall that � threads are partitioned into �

�
warps of �

threads each. Let us partition
 addresses into �
�

groups of �
addresses each such that each group is accessed by a warp.
Let �� � ������ ������ � � � � �
�������� (� � � � �

�
� �)

denote the �-th group. Suppose that group � � has no gap.
Since ��� � ���� � � for all �, ��� ��� � � always holds for
all �� �� � �� . Hence, � addresses in �� must be in one or two
address groups. Let � be the integer such that a pair � ����

and ������ is a gap. We can partition �� into two sub-
groups by the gap such that ������ ������ � � � � �
�������
and �������� ������� � � � � �
�������� are two subgroups.
Since each subgroup has no gap, it is in one or two address
groups. Hence, �� must be in at most four address groups.
Let �� (� � � � �

�
� �) be the number of gaps in each �� .

In general, each �� can be partitioned into �� � � subgroups
with no gap. Since each group must be in at most two address
groups, �� must be in at most ����� address groups. Hence,
for each �, the memory access by � threads takes,

�
�

�� �
�
���

��� �
�

���� � �	

�
�� �� � �	

time units. Since the sequence has totally � gaps, �� � �� �
� � � � � �

�
�� � � holds. Thus, the sequential memory access

of length
 with fragmentation � takes
�
�
���

��

�
�
�
�

�� �
�
���

��� �
�

���� � �	

�
�� �� � �	

�
�

� �� �

�
�
���

��

�
��

�
� � � �	 � ��

�
�

�

�
� �	

time units.
Next, suppose that � �
. If this is the case,
 threads

accesses
 addresses. Thus, the sequential memory access
takes �

�
�
�
���

���

���� � �	

�
�� �� � �	 � ��

�
� � � �	

time units.
Combining the two cases � �
 and � �
, we have
Theorem 1: The sequential memory access of length
 with

fragmentation � takes �� �
�
� ��

�
� � � �	 time units using �

threads on the UMM with width � and latency �.

III. THE OPTIMAL POLYGON TRIANGULATION AND THE

DYNAMIC PROGRAMMING

This section defines the optimal polygon triangulation prob-
lem (OPT problem) and reviews an algorithm solving this
problem by the dynamic programming technique [11], [29].

Let ��� ��� � � � � ���� be vertices of a convex
-gon. Clearly,
the convex
-gon can be divided into
� � triangles by a set
of
� non-crossing chords. We call a set of such
� non-
crossing chords a triangulation. Figure 4 shows an example
of a triangulation of a convex 8-gon. The convex 8-gon is
separated into 6 triangles by 5 non-crossing chords. Suppose
that a weight ��	� of every chord ���� in a convex
-gon is
given. The goal of the optimal polygon triangulation problem
(OPT problem) is to find an optimal polygon triangulation that

�

�

�

�
�

�

�

��

��

��

��

��

��

��

��

�

�� �� ��

�� ��

��

��

Fig. 6. The parse tree of a triangulation

minimizes the total weight of selected chords for the triangu-
lation. Actually, the corresponding optimal triangulation (i.e.
a set of
 � non-crossing chords) can be obtained by a
few extra bookkeeping steps to obtain the actual triangulation,
using the data structure to compute the minimum total weight.

We will show that the optimal polygon triangulation can
be solved by the dynamic programming technique. For this
purpose, we define the parse tree of a triangulation. Figure 6
illustrates the parse tree of a triangulation. Let �� (� � � �

� �) be edge ������ of a convex
-gon. Also, let � denote
edge ������. The parse tree is a binary tree of a triangulation,
which has the root � and
� � leaves ��� ��� � � � � ����. It also
has
� internal nodes (excluding the root �), each of which
corresponds to a chord of the triangulation. Edges are drawn
from the root toward the leaves as illustrated in Figure 6. Since
each triangle has three nodes, the resulting graph is a full
binary tree with
 � � leaves, in which every internal node
has exactly two children. Conversely, for any full binary tree
with
�� leaves, we can draw a unique triangulation. It is well
known that the number of full binary trees with
�� leaves is
the Catalan number
����

������ [36]. Thus, the number of possible

triangulations of convex
-gon is
������

�����
����� . Hence, a naive

approach, which evaluates the total weights of all possible
triangulations, takes an exponential time.

We are now in a position to show an algorithm using the
dynamic programming for the optimal polygon triangulation
problem. Suppose that an
-gon is chopped off by a chord
������ (� � � � � �
 � �) and we obtain a �� � � � �	-
gon with vertices ����� ��� � � � � �� as illustrated in Figure 7.
Clearly, this �� � �� �	-gon consists of leaves ��� ���� � � � � ��
and a chord ������ . Let �	� be the minimum weight of the
�� � � � �	-gon. The �� � �� �	-gon can be partitioned into
the �� � � � �	-gon, the �� � � � �	-gon, and the triangle
�������� as illustrated in Figure 7. The values of � can be an
integer from � to � � �. Thus, we can recursively define �	�

as follows:

�	� � � if � � � � �,

�	� � ���
�������

��	� ���	� � ����	� � ��	�	

otherwise.

The figure also shows its parse tree. The reader should have no

���

�

�

�

���

��

��

��

��	�

��	�

���
�

���
�

�
�

�� �� ��

Fig. 7. A �� � � � ��-gon is partitioned into a �� � � � ��-gon and a
�� � � � ��-gon

difficulty to confirm the correctness of the recursive formula
and the minimum weight of the
-gon is equal to �	���.

To reduce the computation, we let ��	� � �	������	� and
��	��� � �. We can recursively define ��	� as follows:

��	� � � if � � � � �,

��	� � ���
�������

���	� ����	�	 � ����	� otherwise.

Clearly, from ��	��� � �, ��	��� � �	��� � ��	��� �
�	��� is the minimum weight of the
-gon. Let us start with
a simple algorithm for computing all ��	� . We say that the

 � � � � elements ��	�����	��� � � � �������	��� of �
constitute diagonal �. In other words each � �	� is in diagonal
� � �. Clearly, elements in diagonal � can be computed if all
elements in diagonals 0, 1, � � �, � � � are computed. Using
this idea, the simple parallel algorithm, Algorithm DP-OPT
computes all values in � in
 � � stages. Each Stage �

(� � � �
 � �) computes the values in diagonal � using
the recursive formula for ��	� . Since Stages 0, 1, � � �, � � �
have computed elements in diagonal 0, 1, � � �, � � �, this is
possible. Figure 8 shows elements computed in each Stage �

for 8-gon illustrated in Figure 4. The details of Algorithm
DP-OPT is spelled out as follows:

[Algorithm DP-OPT]
for �� � to
� � do // Loop A
for � � �� � to
� � do
��	� � ��

for �� � to
� � do // Loop B (Stage 0)
��	� � �

for � � � to
� � do //(Stage �)
for �� � to
� � � � do // Loop C

for � � � to �� � � � do
��	�� � ������	�����	� ����	��	

for �� � to
� � � � do // Loop D
��	�� ���	�� � ����	��

In Loop A of Algorithm DP-OPT, all elements in � are
initialized by ��. Loop B corresponds to Stage 0, which

stores 0 in all ��	� (� � � �
 � �). Loop C computes
������	�� ���	� � ���	��	 for all � and stores it in
��	��. Figure 9 illustrates how ��	�� is computed. Clearly,
��	�� � ��������������	� ����	��	 � ����	�� holds
at the end of Stage �. Thus, Algorithm DP-OPT solves the
OPT problem correctly.

diagonal 6

0

0

0

0

0

0

0

3 4 5 62 71

����

�
1

2

3

4

5

6

7

diagonal 5

diagonal 4

diagonal 3

diagonal 2

diagonal 1

diagonal 0

4

5

8

4

1

3

3

1

1

3

4

7

6

7

4

8

6

9

11

6

6

�

Fig. 8. The computation of ������ and the resulting values of ����

����	�

��	���	�

��	���	�

����	�������

Fig. 9. The computation of ������ by Algorithm DP-OPT

Let us evaluate the computing time. Each Stage � (� � � �

� �) performs

� �
 � � � �	 ��	�’s, ��	�����	��� � � � � ������	���

are computed, and
� the computation of each ��	� involves the computation

of the minimum over � values, each of which is the sum
of two ��	�’s.

Thus, each Stage � takes

�
� � � �	 � ���	 � ��
� � ��	

time. Therefore, Algorithm DP-OPT runs in
�

�������

��
� � ��	 � ��
�	

time.

IV. AN ALGORITHM FOR THE OPT PROBLEM ON THE

UMM

It is possible to implement Algorithm DP-OPT in the
UMM as it is. However, such implementation will perform

the sequential memory access with large fragmentation. The
main purpose of this section is to modify Algorithm DP-OPT
such that its implementation performs the sequential memory
access with small fragmentation.

The modified algorithm, Algorithm UMM-OPT has Stages
0, 1, � � �,
 � �. Each Stage � (� � � �
 � �) performs
��	� � ������	� � � � � 	 for � and � such that

� one of � and � is in diagonal � � �, and
� the other is in diagonals 0, 1, � � �, � � �.

Hence, the operation ��	� � ������	� � ��� 	 is performed
for elements ��	� in diagonals �, � � �, � � �, ����
 � �� ��	.
Hence, in each Stage �, the values of elements in diagonal �
are determined. Also, the values of elements in diagonals ���,
� � �, � � �, ����
� �� ��	 are partially computed. The reader
should refer to Figure 10 for illustrating diagonals computed
by Algorithm UMM-OPT.

diagonal 0

diagonal �

diagonal �� �

diagonal ��

determined

partially computed

diagonal 0

diagonal �

diagonal �� �

determined

partially computed

Fig. 10. Diagonals computed by Algorithm UMM-OPT

We will show how ��	� � ������	� � ��� 	 is performed
in Stage �.
Case 1: � is in diagonal � � �, say, � ���	����.
We perform ��	� � ������	� ���	���� � ���	�	 for
� � �� �, �� ���, � � �, ����
� �� ����� �	. Let us verify
the reason why � takes value up to ����
 � �� � � �� � �	.
Clearly, ���	� in �-th column, and thus, � �
 � �. Also,
since ���	� is in diagonal � � �� � �	 and it must be in
diagonal � � � or smaller, � � �� � �	 � � � �, that is,
� � ����� � be satisfied. Thus, � � ����
� �� ����� �	

holds. Figure 11 illustrates elements updated in Case 1. We can
see that sequential memory read is performed for elements in
row �� � and sequential memory write is performed for those
in row �.
Case 2: � is in diagonal � � �, say, � � ���	��,
���	���, � � �, ���	���
���	������.
We perform ��	� � ������	� ���	��� � �����	�	 for
� � �� �, �� � � �, � � �, ����
� �� �� �� � �	. The reader
should have no difficulty to confirm that � takes value up to
����
��� ������	 similarly to Case 1. Figure 12 illustrates
elements updated in Case 2. We can see that sequential
memory read is performed for elements in row � and sequential
memory write is performed for those in row �. Also, sequential
memory read is performed for elements in diagonal ���. The
fragmentation of this sequential memory read is very large,
because elements are not in the same row. Hence, we store all
elements in diagonal � � � in a 1-dimensional array � at the
beginning of Stage � to reduce the fragmentation.

diagonal 0

diagonal �

����	�����	���

��	���	�

row �

row �� �

Fig. 11. The computation of Algorithm UMM-OPT for Case 1

diagonal 0

diagonal �

����	�

��	���	�

row �

diagonal � � �

Fig. 12. The computation of Algorithm UMM-OPT for Case 2

We are now in a position to write Algorithm UMM-OPT.
Let ��� ��� � � � � ���� denote elements of 1-dimensional array
�. The details are spelled out as follows:

[Algorithm UMM-OPT]
for �� � to
� � do in parallel // Loop A
for � � �� � to
� � do
��	� � ��

for �� � to
� � do // Loop B (Stage 0)
��	� � �

for � � � to
� � do // (Stage �)
for �� � to
� � � � do in parallel //Loop C
�� ���	����

for �� � to
� � � � do in parallel //Loop D (Case 1)
for � � �� � to ����
� �� �� �� � �	 do in parallel
��	� � ������	� ���	���� ����	�	

for �� � to
� � � � do in parallel //Loop E (Case 2)
for � � �� � to ����
� �� �� �� � �	 do in parallel
��	� � ������	� ���	��� � �����	

for �� � to
� � � � do in parallel //Loop F
��	�� ���	�� � ����	��

Loops A and B are the same as those of Algorithm DP-
OPT. Loop C copies all elements in diagonal � � � to 1-
dimensional array �. Loops D and E correspond to Cases 1
and 2 respectively. Finally, Loop F adds � ���	�� to ��	�� to
complete the computation of all elements in diagonal �.

V. THE COMPUTING TIME OF ALGORITHM UMM-OPT ON

UMM

This section is devoted to evaluating the running time of
Algorithm UMM-OPT on the UMM with � threads, width
� and latency �. We use Theorem 1 to evaluate the time for
the sequential memory access performed by Algorithm UMM-
OPT. For this purpose, we will evaluate the length and the
fragmentation of the sequential memory access performed in
each loop of Algorithm UMM-OPT. Once we have the length
and the fragmentation, the running time can be evaluated using
Theorem 1. The reader should refer to Table I that summarizes
the computing time of each loop of Algorithm UMM-OPT.

In Loop A, the sequential memory write to a sequence
��	�����	��� � � � ���	��� is performed for each � (� �
� �
 � �). Clearly, this sequence has no gap. Thus,
Loop A can be done by the sequential memory write of
length

����
��� �
 � � � �	 �
� with fragmentation
 � .

Loop B performs the sequential memory write to a sequence
��	����	�� � � � �����	���. Since every adjacent pair is a gap,
this sequence of length
� � has
� � gaps.

Next, let us evaluate the length and the fragmentation of
sequential memory access performed in each loop of each
Stage � (� � � �
 � �). In Loop C,
 � � � � elements
in diagonal � � � of � are read. This corresponds to the
sequential read of length
���� and fragmentation
����. It
also performs the sequential memory write for 1-dimensional
array � with length
 � � with fragmentation 0. Loop D
performs three types of sequential memory access: � �	� ,
��	����, and ���	� . For each � (� � � �
 � � � �),
the sequential memory access to ��	� has no gap. Hence, the
sequential memory access to ��	� combined for all � is of

TABLE I
THE ANALYSIS OF RUNNING TIME OF ALGORITHM UMM-OPT

accessed array length fragmentation running time remark

Loop A ���� 	 �� �� 	
��
�

�
� ���

�
� �� �� initialization by ��

Loop B ���� �� � �� �
� �
�
� ��

�
� � � �� initialization by 0

Stage � Loop C �������� �� � � � �� � � �
� �
�
� ��

�
� � � �� reading from diagonal � � �

�� �� � � � 0
� �
�
� ��

�
� �� writing in a 1-d array

Loop D ���� 	 �� �� � � �
��
�

�
� ���

�
� �� �� reading/writing row �

�������� 	 �� �� � � �
� �
�
� ��

�
� �� reading from diagonal � � �

������ 	 �� �� � � �
��
�

�
� ���

�
� �� �� reading from row �� �

Loop E ���� 	 �� �� � � �
��
�

�
� ���

�
� �� �� reading/writing row �

������ 	 �� �� � � �
��
�

�
� ���

�
� �� �� reading from row �

������ 	 �� �� � � �
��
�

�
� ���

�
� �� �� reading from a 1-d array

Loop F ������ �� � � � �� � � �
� �
�
� ��

�
� � � �� reading/writing diagonal �

������� �� � � � �� � � �
� �
�
� ��

�
� � � �� reading/writing diagonal � � � of �

All Stages
��
�

�
� ���

�
� ��� ���

length

������
���

�����
� �� �� �� � �	� ��� �	 � �	 �
�

with fragmentation
����. Similarly, the sequential memory
access to ��	���� and ���	� is of length �
� with
fragmentation
 � � � �. Loop D performs three types of
sequential memory access: ��	� , ��	��� , and �����. The
reader should have no difficulty to confirm that each sequential
memory access is of length �
� with fragmentation
����.
Loop E performs two memory access operations: � �	��

and ����	�� . These sequential memory access are of length

 � � � � with fragmentation
 � � � �. Thus, each Stage �

takes ���
�

�
� ���

�
� ��
	 time units. It follows that Stages 1

to
� � takes ���
�

�
� ���

�
�
� �
�	 time units.

We will show that ��
�	 in the computing time can be
removed and Algorithm UMM-OPT runs in �� �

�

�
� ���

�
�
�	

time units. We consider three cases: � �
, � �
�, and

 � � �
�.
Case 1: � �

From ��

�
�
�, we have ���

�

�
� ���

�
�
� �
�	 � ���

�

�
�

���
�

�
�	.
Case 2: � �
�

Tables � and � can be stored in one address group each. Thus,
all memory access requests by a warp occupy one pipeline
stage. Hence, the sequential memory access of length �
�

for tables � and � can be done in �� �
�

�
� ���

�
� �	 time units.

Hence, every loop of Algorithm UMM-OPT takes �� �
�

�
�

���
�
��	 time units, and Algorithm UMM-OPT runs in �� �

�

�
�

���
�

�
�	 time units.
Case 3:
 � � �
�

For simplicity, we assume that
 is a multiple of � and let
� � ��

�
. Clearly, table � are partitioned into � address groups.

Hence consecutive � rows are in the same address group. In

Algorithm UMM-OPT, row � of � is accessed for each value
of loop variable �. Hence, every loop accesses � from the
top row to the bottom row. We can think that a pair of two
adjacent memory accesses is a gap, only if they are in different
address groups. Under this definition of the gap, the sequential
memory access of each loop has � � � gaps. Also, it should
have no difficulty to confirm that Theorem 1 holds under this
definition. Hence, each sequential memory access can be done
in ���

�

�
� ���

�
� � � �	 � ���

�

�
� ���

�
� �	 time units and

Algorithm UMM-OPT runs in �� �
�

�
� ���

�
�
�	 time units.

Finally, we have,
Theorem 2: The optimal polygon triangulation problem of

a convex
-gon can be solved in �� �
�

�
� ���

�
�
�	 time units

using � threads on the UMM with width � and latency �.
Let us discuss the time lower bound for Theorem 2. Note

that, we will prove the lower bound of implementations of the
OPT problem that uses the dynamic programming technique.
It may be possible that ��
�	-time algorithm for the optimal
polygon triangulation problem exists, and the problem can be
solved more efficiently than Theorem 2. What we prove is
Theorem 2 is time optimal, as long as the dynamic program-
ming technique is used.

Clearly, ��
�	 numbers must be read at least once, and
the � memory banks on the UMM accept at most � access
requests in a time unit. Hence, it takes at least �� �

�

�
	 time

units to solve the OPT problem. Also, � threads can access
at most � numbers in � time units, and thus they can access
at most �

�
numbers in � time units. Since �

�
�
� must

be satisfied, it takes at least � � ���
��
�
	 time units. Also, to

compute the values of � in diagonal �, those in diagonal
� � � are necessary. In other words, the values of � � � must
be read before those in diagonal � are written. This takes at
least ���	 time units. Since we need to compute the value in
diagonal
� �, it takes at least ��
�	 time units to solve the
OPT problem.

From the discussion above, we have,

Theorem 3: Any implementation of the dynamic program-
ming based parallel algorithm for the OPT problem for an

-gon needs �� �

�

�
� ���

�
�
�	 time units using � threads on

the UMM with width � and latency �.
This theorem implies that Algorithm UMM-OPT for Theo-
rem 2 is time optimal has no extra overhead.

VI. CONCLUSION

In this paper, we have presented the sequential memory
access on the Unified Memory Machine (UMM) that makes
the computing time evaluation easy, and shown an optimal al-
gorithm for the optimal triangulation problem (OPT problem)
using the sequential memory access on the UMM. We have
shown that the sequential memory access of length
 with
fragmentation � can be done in �� �

�
� ��

�
� �� �	 time units

using � threads on the UMM with width � and latency �. Also,
we have shown that the dynamic programming to solve the
optimal polygon triangulation problem can be implemented us-
ing the sequential memory access on the UMM. The resulting
implementation for a convex
-gon runs in �� �

�

�
� ���

�
�
�	

time units using � threads on the UMM with width � and
latency �. We have also proved that any implementation of the
dynamic programming based parallel algorithm for the OPT
problem for an
-gon needs �� �

�

�
� ���

�
�
�	 time units. Thus,

our implementation is time optimal.
In our previous paper [25], we have presented the Hierar-

chical Memory Machine (HMM), a hybrid of the UMM and
the DMM. The HMM is a more realistic model of CUDA-
enabled GPUs, which has multiple streaming processors with
the global memory. It is very interesting future work to show
a more efficient implementation on the HMM for the dynamic
programming, that runs in �� �

�

�
	 time units.

REFERENCES

[1] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures and
Algorithms. Addison Wesley, 1983.

[2] A. Gibbons and W. Rytter, Efficient Parallel Algorithms. Cambridge
University Press, 1988.

[3] J. JáJá, An Introduction to Parallel Algorithms. Addison-Wesley, 1992.
[4] A. Grama, G. Karypis, V. Kumar, and A. Gupta, Introduction to Parallel

Computing. Addison Wesley, 2003.
[5] M. J. Quinn, Parallel Computing: Theory and Practice. McGraw-Hill,

1994.
[6] W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan

Kaufmann, 2011.
[7] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of

computing euclidean distance map with efficient memory access,” in
Proc. of International Conference on Networking and Computing, Dec.
2011, pp. 68–76.

[8] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template matching
using pixel rearrangement on the GPU,” in Proc. of International
Conference on Networking and Computing, Dec. 2011, pp. 153–159.

[9] K. Ogawa, Y. Ito, and K. Nakano, “Efficient canny edge detection
using a gpu,” in Proc. of International Conference on Networking and
Computing, Nov. 2010, pp. 279–280.

[10] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic program-
ming for the matrix chain product on the GPU,” in Proc. of International
Conference on Networking and Computing, Dec. 2011, pp. 320–326.

[11] ——, “Accelerating the dynamic programming for the optial poygon
triangulation on the GPU,” in Proc. of International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP, LNCS
7439), Sept. 2012, pp. 1–15.

[12] A. Uchida, Y. Ito, and K. Nakano, “An efficient GPU implementation
of ant colony optimization for the traveling salesman problem,” in Proc.
of International Conference on Networking and Computing, Dec. 2012,
pp. 94–102.

[13] NVIDIA Corporation, “NVIDIA CUDA C programming guide version
5.0,” 2012.

[14] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations
of a parallel algorithm for computing euclidean distance map in mul-
ticore processors and GPUs,” International Journal of Networking and
Computing, vol. 1, no. 2, pp. 260–276, July 2011.

[15] NVIDIA Corporation, “NVIDIA CUDA C best practice guide version
3.1,” 2010.

[16] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. Morgan Kaufmann, 1991.

[17] R. H. Bisseling, Parallel Scientific Computation: A Structured Approach
using BSP and MPI. Oxford University Press, 2004.

[18] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken, “LogP: towards a realistic model
of parallel computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel programming. ACM,
1993, pp. 1–12.

[19] R. Vaidyanathan and J. L. Trahan, Dynamic Reconfiguration: Architec-
tures and Algorithms. Kluwer Academic/Plenum Publishers, 2004.

[20] K. Nakano, “Simple memory machine models for GPUs,” in Proc. of In-
ternational Parallel and Distributed Processing Symposium Workshops,
May 2012, pp. 788–797.

[21] A. Kasagi, K. Nakano, and Y. Ito, “An implementation of conflict-free
off-line permutation on the GPU,” in Proc. of International Conference
on Networking and Computing, 2012, pp. 226–232.

[22] K. Nakano, “Asynchronous memory machine models with barrier syn-
cronization,” in Proc. of International Conference on Networking and
Computing, Dec. 2012, pp. 58–67.

[23] ——, “Efficient implementations of the approximate string matching on
the memory machine models,” in Proc. of International Conference on
Networking and Computing, Dec. 2012, pp. 233–239.

[24] ——, “An optimal parallel prefix-sums algorithm on the memory
machine models for GPUs,” in Proc. of International Conference on
Algorithms and Architectures for Parallel Processing (ICA3PP, LNCS
7439). Springer, Sept. 2012, pp. 99–113.

[25] ——, “The hierarchical memory machine model for GPUs,” in Proc.
of International Parallel and Distributed Processing Symposium Work-
shops, May 2013, pp. 591–600.

[26] D. Man, K. Nakano, and Y. Ito, “The approximate string matching on the
hierarchical memory machine, with performance evaluation,” in Proc. of
International Symposium on Embedded Multicore/Many-core System-on-
Chip, Sept. 2013.

[27] A. Kasagi, K. Nakano, and Y. Ito, “An optimal offline permutation
algorithm on the hierarchical memory machine, with the GPU imple-
mentation,” in Proc. of International Conference on Parallel Processing,
Oct. 2013.

[28] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Transactions on Computers, vol. C-21, pp. 948–960, 1972.

[29] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
Algorithms. MIT Press, 1990.

[30] L. Bergroth, H. Hakonen, and T. T. Raita, “A survey of longest common
subsequence algorithms,” in Proc. of International Symposium on String
Processing and Information Retrieval, 2000.

[31] P. D. Gilbert, “New results on planar Triangulations,” in M.Sc. thesis,
July 1979, pp. Report R–850.

[32] G. T. Klincsek, “Minimal triangulations of polygonal domains,” Annals
of Discrete Mathematics, vol. 9, pp. 121–123, July 1980.

[33] P. Steffen, R. Giegerich, and M. Giraud, “Gpu parallelization of algebraic
dynamic programming,” in Proc. of International Conference on Parallel
Processing and Applied Mathematics: Part II, Sept. 2009, pp. 290–299.

[34] C.-C. Wu, J.-Y. Ke, H. Lin, and W. chun Feng, “Optimizing dynamic
programming on graphics processing units via adaptive thread-level
parallelism,” in Proc. of International Conference on Parallel and
Distributed Systems, Dec. 2011.

[35] S. Xiao, A. M. Aji, and W. chun Feng, “On the robust mapping of
dynamic programming onto a graphics processing unit,” in Proc. of
International Conference on Parallel and Distributed Systems, Dec.
2009, pp. 26–33.

[36] G. Pólya, “On picture-writing,” Amer. Math. Monthly, vol. 63, pp. 689–
697, 1956.

