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Abstract—The Discrete Memory Machine (DMM) is a the-
oretical parallel computing model that captures the essence
of memory access of the streaming multiprocessor on CUDA-
enabled GPUs. The DMM has w memory banks that constitute
a shared memory, and w threads in a warp try to access them at
the same time. However, memory access requests destined for
the same memory bank are processed sequentially. Hence, it is
very important for developing efficient algorithms to reduce the
memory access congestion, the maximum number of memory
access requests destined for the same bank. The memory access
congestion takes value between 1 and w. The main contribution
of this paper is to present a novel algorithmic technique called
the random address shift that reduces the memory access
congestion. We show that the memory access congestion is
expected O( log’lgog’w) for any memory access requests including
malicious ones by a warp of w threads. The simulation results
show that the expected congestion for w = 32 threads is only
3.436. Since the malicious memory access requests destined for
the same bank take congestion 32, our random address shift
technique substantially reduces the memory access congestion.
We have applied the random address shift technique to matrix
transpose algorithms. The experimental results on GeForce
GTX Titan show that the random address shift technique
is practical and can accelerate the straightforward matrix
transpose algorithms by a factor of 5.

Keywords-GPU, CUDA, memory bank conflicts, memory
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I. INTRODUCTION

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3], [4]. Latest GPUs are
designed for general purpose computing and can perform
computation in applications traditionally handled by the
CPU. Hence, GPUs have recently attracted the attention of
many application developers [1], [3], [5], [6], [7]. NVIDIA
provides a parallel computing architecture called CUDA
(Compute Unified Device Architecture) [8], the computing
engine for NVIDIA GPUs. CUDA gives developers access
to the virtual instruction set and memory of the parallel

computational elements in NVIDIA GPUs. In many cases,
GPUs are more efficient than multicore processors [2], since
they have hundreds of processor cores and very high memory
bandwidth.

NVIDIA GPUs have streaming multiprocessors (SMs)
each of which executes multiple threads in parallel. CUDA
uses two types of memories in the NVIDIA GPUs: the
shared memory and the global memory [8]. Each SM has
the shared memory, an extremely fast on-chip memory
with lower capacity, say, 16-48 Kbytes, and low latency.
Every SM shares the global memory implemented as an
off-chip DRAM, and has large capacity, say, 1.5-6 Gbytes,
but its access latency is very long. The efficient usage of
the shared memory and the global memory is a key for
CUDA developers to accelerate applications using GPUs. In
particular, we need to consider the bank conflict of the shared
memory access and the coalescing of the global memory
access [9]. The address space of the shared memory is
mapped into several physical memory banks. If two or more
threads access the same memory bank at the same time, the
access requests are processed in turn. Hence, to maximize
the memory access performance, threads in a warp should
access distinct memory banks to avoid the bank conflicts of
the shared memory accesses. To maximize the bandwidth
between the GPU and the DRAM chips, the consecutive
addresses of the global memory must be accessed at the
same time. Thus, CUDA threads should perform coalesced
access when they access the global memory.

The most well-studied parallel computing model is the
Parallel Random Access Machine (PRAM) [10], [11], [12],
which consists of processors and a shared memory. Each
processor on the PRAM can access any address of the shared
memory in a time unit. The PRAM is a good parallel com-
puting model in the sense that parallelism of each problem
can be revealed by the performance of parallel algorithms on
the PRAM. GPUs have the shared memory and the global
memory accessed by multiple threads. However, parallel



algorithms developed for the PRAM may not achieve good
performance on GPUs. We should consider the memory
access characteristics such as the bank conflicts and the
coalescing when we develop efficient parallel algorithms for
GPUs.

In our previous paper [13], we have introduced two
models, the Discrete Memory Machine (DMM) and the
Unified Memory Machine (UMM ), which reflect the essential
features of the shared memory and the global memory of
CUDA-enabled GPUs. Since the DMM and the UMM are
promising as theoretical computing models for GPUs, we
have published several efficient algorithms on the DMM
and the UMM [14], [15], [16], [17], [18], [19], [20]. The
DMM and the UMM have three parameters: the number p
of threads, width w, and memory access latency [. Figure 1
illustrates the outline of the architectures of the DMM and
the UMM with p = 20 threads and width w = 4. Each
thread is a Random Access Machine (RAM) [21], which
can execute fundamental operations in a time unit. Threads
are executed in SIMD [22] fashion, and run on the same
program and work on the different data. The p threads
are partitioned into Z groups of w threads each called
warp. The £ warps are dispatched for memory access in
turn, and w threads in a dispatched warp send memory
access requests to the memory banks (MBs) through the
memory management unit (MMU). We do not discuss the
architecture of the MMU, but we can think that it is a
multistage interconnection network [23] in which memory
access requests are moved to destination memory banks in
a pipeline fashion. Note that the DMM and the UMM with
width w has w memory banks and each warp has w threads.
For example, the DMM and the UMM in Figure 1 have 4
threads in each warp and 4 MBs.
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Figure 1. The architectures of the DMM and the UMM with width w = 4

MBs constitute a single address space of the memory.
A single address space of the memory is mapped to the
MBs in an interleaved way such that the word of data of
address 7 is stored in the (i mod w)-th bank, where w is the
number of MBs. The main difference of the two architectures
is the connection of the address line between the MMU
and the MBs, which can transfer an address value. In the
DMM, the address lines connect the MBs and the MMU
separately, while a single set of address lines from the MMU
is connected to the MBs in the UMM. Hence, in the UMM,
the same address value is broadcast to every MB, and the
same address of the MBs can be accessed in each time
unit. On the other hand, different addresses of the MBs can
be accessed in the DMM. Since the memory access of the
UMM is more restricted than that of the DMM, the UMM
is less powerful than the DMM. Also, we assume that MBs
are accessed in a pipeline fashion with latency [. In other
words, if a thread sends a memory access request, it takes
at least ! time units to complete it. A thread can send a
new memory access request only after the completion of
the previous memory access request and thus, it can send at
most one memory access request in ! time units.

It is very important for developing efficient algorithms on
the DMM to reduce the memory access congestion, the max-
imum number of memory access requests by a warp destined
for the same bank. The memory access congestion takes
value between 1 and w. The reader should refer to Figure 2
showing examples of the memory access and the congestion.
If w threads send memory access requests to distinct banks,
the congestion is 1 and the memory access is conflict-free. If
all memory access requests are destined to the same bank,
the congestion is w. It is not easy and sometimes impos-
sible to minimize the memory access congestion for some
problems. For example, a straightforward matrix transpose
algorithm that reads a matrix in row-major order and writes
in column-major order involves memory access with conges-
tion w. On the other hand, by an ingenious memory access
technique, we can transpose a matrix with congestion 1 [13].
Further, in our previous paper [13], we have developed
a complicated graph coloring technique to minimize the
memory access congestion for off-line permutation. We have
implemented this offline permutation algorithm on GeForce
GTX-680 GPU [14]. The experimental results showed that
the offline permutation algorithm developed for the DMM
runs on the GPU much faster than the conventional offline
permutation algorithm [14]. Although it is very important to
minimize the memory access congestion, it is not easy.

The main contribution of this paper is to present a
novel algorithmic technique called the random address shift
to reduce the memory access congestion on the DMM.
Basically, the random address shift technique is inspired
by parallel hashing that averages the access to memory
modules [24], [25]. Quite surprisingly, for any memory
access requests by a warp of w threads, the memory access
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Figure 2. Examples of memory access and the congestion for w = 4

. . log w .
congestion is expected O oglog —) using the random address

shift technique. In particular, it threads perform contiguous
memory access, the congestion is still 1. Using the random
address shift technique, parallel algorithm developers for
the GPU do not have to take care of the memory access
congestion. We also show that the expected value of the
memory access congestion by simulation. The simulation
results show that the expected value is less than 3.5 for
current GPUs with w = 32. Even if the number of memory
banks is increased to w = 256 in the distant future, it is less
than 5.

Further, we have implemented the random address shift
technique in a streaming multiprocessor on GeForce GTX
TITAN [26] which supports CUDA Compute Capability
3.5 [8]. In particular, we have implemented three ma-
trix transpose algorithms, Contiguous Read Stride Write
(CRSW), Stride Read Contiguous Write (SRCW), and Di-
agonal Read Diagonal Write (DRDW). The CRSW and the
SRCW follow the definition of a matrix transpose. More
specifically, in the CRSW, a matrix is read in row major
order and is written in column major order to transpose a
matrix. The SRCW reads a matrix in column major order
and writes in row major order. Both the CRSW and the
SRCW involve memory access with congestion w, and these
algorithms take a lot of time. The DRDW performs reading
and writing in diagonal order to reduce the memory access
congestion to 1. Thus, the DRDW runs much faster than the
others. However, it may not be easy for CUDA developers
to find an efficient algorithm such as the DRDW for compli-
cated problems. We have applied the random address shift
technique for these three algorithm. The resulting algorithms
runs almost the same running time. Also, their running time
are much faster than the CRSW and the SRCW implemented
as they are. It follows that, the random address shift is
practical and works efficiently in current GPUs. When a user
implements some algorithm in the GPUs, it is not necessary
to analyze and reduce the memory access congestion. It
is sufficient to apply the random address shift technique,
and the resulting implementation has small memory access
congestion.

This paper is organized as follows. In Section II, we
first define the DMM. Section III introduces fundamental
memory access operations and matrix transpose algorithms
which are used to evaluate the performance of the random
address shift technique. In Section IV, we present the ran-
dom address shift technique and evaluate the memory access
congestion by theoretical analysis as well as by simulation.
Section V, we show experimental results on GeForce GTX
TITAN. Section VI concludes our work.

II. DISCRETE MEMORY MACHINE (DMM)

The main purpose of this section is to define the Discrete
Memory Machine (DMM) introduced in our previous pa-
per [13]. The reader should refer to [13] for the details of
the DMM.

Let m[i] (¢ > 0) denote a memory cell of address i in
the memory. Let B[j] = {m[j], m[j +w], m[j + 2w], m[j +
3wl,...} 0 < j < w—1) denote the j-th bank of the
memory. Clearly, a memory cell mJ[i] is in the (¢ mod w)-
th memory bank. We assume that memory cells in different
banks can be accessed in a time unit, but no two memory
cells in the same bank can be accessed in a time unit. Also,
we assume that [ time units are necessary to complete an
access request and continuous requests are processed in a
pipeline fashion through the MMU. Thus, it takes k +1 —1
time units to complete k access requests to a particular bank.

Let T(0),7(1),...,T(p — 1) be p threads. We assume
that p threads are partitioned into £ groups of w threads
called warps. More specifically, p threads are partitioned
into £ warps W(0),W(1), ..., W(£ — 1) such that
W) =A{T6 w), T -w+1),....,T(H+1) - w—1)}
0<i< % —1). Warps are dispatched for memory access in
turn, and w threads in a warp try to access the memory at the
same time. In other words, W (0), W(1),...,W (2 —1) are
dispatched in a round-robin manner if at least one thread in a
warp requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory
access. When W (3) is dispatched, w threads in W (i) send
memory access requests, one request per thread, to the
memory. Threads are executed in SIMD [22] fashion, and all
thread must execute the same instruction. Hence, if one of
them sends a memory read request, none of the others can
send memory write request. We also assume that a thread
cannot send a new memory access request until the previous
memory access request is completed. Hence, if a thread send
a memory access request, it must wait [ time units to send
a new one.

Figure 3 shows an example of memory access on the
DMM with w (= 4) memory banks and memory ac-
cess latency of I (= 5). We assume that each mem-
ory access request is completed when it reaches the last
pipeline stage. Two warps W(0) and W(1) access to
(m[7],m[5], m[15],m[0]) and (m[10], m[11], m[12], m[9]),
respectively. In the DMM, memory access requests by W (0)
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are separated into two pipeline stages, because m|[7] and
m[15] are in the same bank B[3]. Those by W (1) occupies
1 stage, because all requests are destined for distinct banks,
one request for each bank. Thus, the memory requests
occupy three stages, and it takes 3 + 5 — 1 = 7 time units
to complete the memory access.

Let us define the congestion of memory access by a
warp of w threads. Suppose that a warp of w threads
access the memory banks. The memory access congestion
is the maximum number of requests destined for the same
bank. More specifically, if z; memory requests are destined
for each B[i] (0 < i < w — 1), then the congestion is
max{x; | 0 < i < w — 1}. For example, the congestion
of memory access by W (0) in Figure 3 is 2, because two
requests are destined for m[7] and m[15] in bank B[3]. That
by W (1) is 1 because all requests are destined for distinct
banks. We assume that, if two or more threads access the
same address, the memory access requests are merged and
processed as a single request. Thus, if all w threads in a
warp access the same address, the congestion is 1. We also
assume that if multiple memory writing requests are sent to
the same address, one of them is arbitrary selected and its
writing operation is performed. The other writing requests
are ignored. Thus, the DMM works as the Concurrent Read
Concurrent Write (CRCW) mode with arbitrary resolution
of simultaneous writing [10].

III. FUNDAMENTAL MEMORY ACCESS OPERATIONS AND
MATRIX TRANSPOSE ALGORITHMS

The main purpose of this section is to show three funda-
mental memory access operations for a matrix, the contigu-
ous access, the stride access and the diagonal access [13].
We also show three transposing algorithms of a matrix using
these three memory access operations.

Suppose that we have a matrix a of size w X w in the
memory of the DMM. We assume that a[i][j] (0 < i,j <
w — 1) is arranged in address 7 - w + j. Since (i - w +
j) mod w = j, each a[é][4] is in bank B[j]. In these memory
access operations, each element in a matrix is accessed by
a thread. In the contiguous access, threads are assigned to
the matrix in row-major order. Threads are assigned to the
matrix in column-major order in the stride access. In the

diagonal access

contiguous access stride access

Figure 4. The contiguous access, the stride access, and the diagonal access
forw =4

diagonal access, threads are assigned in diagonal order. The
readers should refer to Figure 4 for illustrating these three
memory access operations for w = 4.

More formally, these three memory access operations can
be written as follows:

[Contiguous Access]
for 4 «— 0 to w — 1 do in parallel
for j <~ 0 to w — 1 do in parallel
thread T'(¢ - w + j) accesses a[i][j]

[Stride Access]
for 4 «— 0 to w — 1 do in parallel
for j - 0 to w — 1 do in parallel
thread T'(¢ - w + j) accesses a[j][¢]

[Diagonal Access]
for 4 <~ 0 to w — 1 do in parallel
for j 0 to w — 1 do in parallel
thread T'(4 - w + j) accesses a[j][(¢ + j) mod w]
(or a[(i + j) mod w][j])

It should be clear that the congestion of the contiguous
access and the diagonal access is 1. On the other hand, in the
stride access, w threads in a warp access distinct addresses
in the same bank, the congestion is w. In the contiguous
access, w warps send memory access requests in w time
units. Thus, it takes w + [ — 1 time units to complete the
contiguous access. In the stride access, w memory access
requests sent by a warp occupy w pipeline stages. Hence,
it takes w? + [ — 1 time units to complete the contiguous
access. Since the congestion of the diagonal access is 1, the
diagonal access takes w + [ — 1 time units similarly to the



contiguous access.

We can design three matrix transpose algorithms, Con-
tiguous Read Stride Write (CRSW), Stride Read Contigu-
ous Write (SRCW), and Diagonal Read Diagonal Write
(DRDW), using these three memory access operations. In
the CRSW, a matrix is read in row major order and is
written in column major order. In other words, the CRSW
performs the contiguous read and the stride write for matrix
transpose. Similarly, the SRCW performs the the stride read
and the stride write. In the DRDW, a matrix is read and
written in diagonal order. The reader should refer to Figure 5
illustrating the three matrix transpose algorithms. The details
of the three matrix transpose algorithms are spelled out as
follows:

[Contiguous Read Stride Write (CRSW)]
for 4 < 0 to w — 1 do in parallel
for j <~ 0 to w — 1 do in parallel
thread T'(i - w + j) performs a[j][i] + a[i][4]

[Stride Read Contiguous Write (SRCW)]
for ¢ < 0 to w — 1 do in parallel
for j <~ 0 to w — 1 do in parallel
thread T'(i - w + j) performs a[¢][j] < a[j][7]

[Diagonal Read Diagonal Write (DRDW)]
for 4 < 0 to w — 1 do in parallel
for j <~ 0 to w — 1 do in parallel
thread T'(i - w + j) performs
alf]{(i + j) mod w] « a[(i + j) mod w][j]

Let us evaluate the computing time of three transpose
algorithms on the DMM. The CRSW transpose and the
SRCW transpose involve the stride memory access. Thus,
they take O(w? + [) time units. The DRDW transpose
performs diagonal read/write, it takes O(w + [) time units.
Hence, we have,

Lemma 1: The CRSW, the SRCW, and the DRDW trans-
pose algorithms for a matrix of size w x w takes O(w? +1)
time units, O(w? + 1) time units, and O(w + [) time units,
respectively, using w? threads on the DMM with width w
and latency 1.

We can implement these algorithms in the streaming mul-
tiprocessor of the GPU as they are. We call such implemen-
tations RAW (RAW access to memory) implementations. For
example, the RAW implementation of the CRSW transpose
algorithm for a matrix of size 32x 32 is described as follows:

[The RAW implementation of the CRSW]
_ _shared__ double al[32][32];
int i = threadIdx.x/32;
int j = threadIdx.x%32;
double c;

c = alilljl;

__syncthreads () ;

aljlli]l = c;
syncthreads () ;

(4)
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Figure 5. Illustrating the three matrix transpose algorithms for w = 4

We assume that a 2-dimensional array a allocated in
the shared memory stores the values of a matrix. In the
RAW implementation, a CUDA block with 1024 threads are
invoked. The value of “threadldx.x” is a thread ID and takes
value from 0 to 1023. The value of a[é][;j] is copied to the
local register c of thread ID with ¢-324-5. After that, a barrier
synchronization operation _ _syncthreads() is executed to
make sure that all elements in @ are copied to local registers
in all threads. Finally, the value of the local register c is
copied to a[j][#]. In Section V, we show experimental results
of the RAW implementation on the GPU.

IV. THE RANDOM ADDRESS SHIFT TECHNIQUE

The main purpose of this section is to present a novel
technique that we call the random address shift. The memory
access congestion is guaranteed to be expected O( lolglgogw)
for any memory access by a warp of w threads. In particular,
the memory access congestion of the contiguous memory
access is still 1 even if the random address shift is used.

Let m denote an array of size n on the DMM. We can
consider that a l-dimensional array m of size n is a 2-
dimensional one of size 7 x w. In other words, each m/[j][k]
(0<j £ #—1,0 <k <w-—1)in the 2-dimensional context
corresponds to m[j - w + k] in the 1-dimensional context.
Note that each m[j][k] is in bank B[k] of the DMM. The key
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idea is to randomly rotate the address mapping to equalize
the memory access requests destined for memory banks.

Suppose that each of w threads in a warp accesses an
element of m at the same time. If all w elements are in
distinct banks, the congestion is 1. On the other hand, the
congestion is w if they are in the same bank. We will
show that, using the random address shift technique, the
expected value of the congestion is at most O( lolglgogw) for
any memory access by w threads including malicious ones.

Let ro,71,. T denote independent random integers
uniformly selected “from [0, w — 1]. Intuitively, the random
address shift technique rotates each j-th row (0 <j < & —
1) of the 2-dimensional array m by r;. More specifically,
each m[j][k] 0 < j < & —1,0 <k < w) is mapped to
m[j][(k + r;) mod w]. In other words, if a thread accesses
m[j][k], it accesses m[j][(k + r;) mod w] instead. Hence,
m|j][k] is arranged in bank B[(k+r;) mod w] of the DMM.
Figure 6 illustrates an example of the random address shift
for n = 24 and w = 4, where randomly selected integers r
are 2, 0, 3, 1, 1, and 2. For example, m[10](= m[2][2]) is
mapped to m[9](= m[2][1]) in B[1].

We will prove that the expected value of the congestion
is at most O(Fﬁg(f;—w). For simplicity, we assume that w
threads always access distinct address. Clearly, this assump-
tion does not decrease the congestion, because memory
access requests to the same address by multiple threads
are merged into one. For the proof, we use an important
probability theory called the Chernoff bound that estimates
the tail probability of the Poisson trials as follows:

Theorem 2 (Chernoff Bound [27]): Let Xo, X1, ...,
X, —1 be independent Poison trials such that X; = 1 with
probability p; (0 < z <n-—1).Let X = Z" 1X and
u = E[X] = ZZ o Pi- We have the following 1nequal1ty
for any § > 0:

66 #
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value of the congestion using the Chernoff bound. Let
Jo>J1s--->Jw—1 and kg, k1,...,ky—1 be the indexes of m
such that each thread T'(i) (0 < i < w — 1) accesses
m[j;][k:]- Using the random address shift technique, each
T(i) accesses m[j;][(k; + ;) mod w] instead. Let A(j)
(0 < j < & —1) be the number of memory access requests
destined for the j-th row of m. Figure 7 shows an example
of memory access by w = 4 threads and the values of A.
Clearly, Zf:_ol A(j) = w.

We fix a particular bank Blu] (0 < u < w — 1) and
evaluate the number of memory access requests destined
for Blu] for random selection of rg,r1,...,7a_1. Let
Xo,X1,...,X=2_1 be a random binary variable Such that
X;=1 1ff m[]][u] (0<j < & —1)is accessed by at least
one of the w threads. Clearly, X = 1 with probability (J )
because A(j) elements in the j-th row of m are accessed
Since rg,71,...,r2_1 are independent, random variables
Xo, X1,...,X=_y are also independent. Thus, Theorem 2

can be used to evaluate the value of X = Ziﬁzgl X, which
is equal to the number of memory access requests destined
for Blu].

We prove the following lemma that evaluates the tail
probability of X.

Lemma 3: For random variable X defined above, we
have,

e2lnw 1

]

Proof: Clearly, p = E[X] = Y 2," 40 = 1 holds.

Hence, from Theorem 2 with pn = 1, we havqeJ

Pr[X >

Inlnw w2’

el

PrlX>QA+9)] < g5mm

2In
for any 6 > 0. Let 1 +6 = 0.

s .
(Héw < #, that is, In m < —2Inw as follows:

We will prove that
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This completes the proof. ]

Let Y be a random variable denoting the memory access
congestion, which is the maximum number of memory
access requests over all banks Blu] (0 < u < w — 1). From
Lemma 3, we have

2] 2] 1
PrlY > - O] < Pr{X > ] w < —.
Inlnw Inlnw w
Thus, we have,
2] 2] 1
Pr[Onge nw]<1and Pr[e nw <Y <w]< —.
Inlnw Inlnw w
Hence, the expected value of Y is at most:
2] 2]
Ev] < Prfo<y <2y
Inlnw® Inlnw
2
1
+Pr[e nw <Y<w-w
Inlnw
elnw 1 log w
< Ve E-w_o(loglogw)'

Consequently, we have the following important theorem:

Theorem 4: By the random address shift, the congestion
of any memory access by a warp of w threads is expected
Ol aglog)-

Recall that the congestion of the contiguous memory
access of the RAW implementation is 1. We will show
that, even if we use the random address shift technique, the
congestion of the contiguous memory access is still 1. In the
contiguous memory access, each warp W(7) (0 <i < w—1)
accesses w elements of the ¢-th row of matrix a. Hence, by
the random address shift, it still accesses the ¢-th row. Thus,
the w threads in W (4) access different banks and we have,

Theorem 5: By the random address shift, the congestion
of the contiguous memory access by a warp of w threads is
still 1.

As shown in Theorem 4 the congestion of any memory
access by a warp is O(%g"lgo’;—w) by the random address
shift. In other words, memory access by a warp occupies
O( 1o]golgo;uw) pipeline registers. Hence, the contiguous access,
the stride access, and the diagonal access of a matrix of size
w X w take O(%}gg% + [) time units. Thus, we have,

Lemma 6: The CRSW, the SRCW, and the DRDW
transpose algorithms for a matrix of size w X w run in
O( lz)”glf’fg";) +1) time units by the random address shift using
w? threads on the DMM with width w and latency [.

We next show that the actual value of E[Y] is not large
and Y has narrow distribution by simulation experiments.

Table I shows these values obtained by 10,000,000 rounds

of simulation, where a round is a single memory access by
w threads. Since the number w of memory banks of current
CUDA -enabled GPUs are 16 or 32 [8], we evaluate the value
of E[Y] for w = 16,32,64,128 and 256 for considering
future extension of GPUs. We use the size n of array m is
1024 (= 2!%) and 1048576 (= 22°). For example, E[Y] =
3.436 when w = 32 and n = 1024. Also, Y = 3 with
probability 55.988%. We can see that the values of E[Y] is
less than 5 even if w = 256 and that Y < 5 with very high
probability for all cases.

V. EXPERIMENTAL RESULTS OF THE RANDOM ADDRESS
SHIFT TECHNIQUE IN A CUDA-ENABLED GPU

The main purpose of this section is to show how we have
implemented the random address shift technique in a CUDA-
enabled GPU. We also show the experimental results of our
implementation.

We can implement the three matrix transpose algorithms
using the random address shift technique. We call such im-
plementation RAS (Random Address Shift access to memory)
implementation. For example, the RAS implementation of
the CRSW transpose algorithm for a matrix of size 32 x 32
is described as follows:

[The RAS implementation of the CRSW transpose]
_ _shared__ double b[32][32];
int r[6];
int i = threadIdx.x/32;
int j = threadIdx.x%32;
double c;

c = Db[1][(J+(r[i/6]1>>(5*(1%6))))&0x1f];
__syncthreads () ;
bl [ (1+(r[j/6]1>>(5*%(3%6))))&0x1f] = c;

__syncthreads () ;

We assume that a 2-dimensional array b stores the value
of a matrix a such that each b[i][(i+7;) mod 32] (0 < 4,5 <
w—1) stores the value of a[é][j]. Also, a 1-dimensional array
r of six local registers stores random numbers r¢, 71, .. .,731
in the range [0, 31] such that each r[i] (0 < i < 5) stores 6
random numbers r;., Ti.641, - - - , Ti-645. Since each r[i] has
32 bits and each r; has 5 bits, this is possible. The reader
should refer to Figure 8 illustrating how random numbers r
are stored in local registers r. In the RAS implementation,
a CUDA block of 1024 threads are invoked similarly to the
RAW implementation. The value of b[é][(j + ;) mod 32] is
copied in the local register c of thread ID with 4-32+4 5. After
that, a barrier synchronization operation _ _syncthreads() is
executed to make sure that all elements in b are copied to
local registers of all threads. Finally, the value of the local
register ¢ is copied to b[5][(¢ + r;) mod 32].

We have evaluated the performance of the RAW and
the RAS implementations for the CRSW transpose, the
SRCW transpose, and the DRDW transpose. We have used
a square matrix of n = 1024 double float (64-bit) numbers
in the shared memory of a streaming multiprocessor for
experiments. Each warp of GeForce GTX Titan has 32



Table I
THE VALUES OF E[Y] AND THE DISTRIBUTION OF Y IN PERCENT

n 1024 (= 219) 1048576 (= 229)
w 16 32 64 128 256 16 32 64 128 256
E[Y] 3.038 3.436 3.713 3.808 3.458 3.078 3.533 3.958 4.378 4.766
1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 21.208 4.207 0.284 0.009 0.003 | 19.466 2.923 0.065 0.000 0.000
3 57.378 | 55.988 | 40.620 | 30.505 | 54.203 | 57.415 | 51.635 | 27.335 6.914 0.444
4 | 18.197 | 32.784 | 47.940 | 58.854 | 45.794 | 19.415 | 36.176 | 53.019 | 56.226 | 38.451
Y 5 2.862 6.158 9.912 9.936 0.000 3.263 7.924 | 16.404 | 30.052 | 47.452
6 0.325 0.782 1.143 0.672 0.000 0.401 1.181 2.764 5.867 | 11.670
7 0.028 | 0.075 | 0.095 | 0.024 | 0.000 | 0037 | 0.145 | 0368 | 0.830 | 1.741
8 0.002 0.006 0.007 0.000 0.000 0.003 0.015 0.041 0.099 0.217
9 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.011 0.023
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002
31 e . . .
I _ 0 minimize the congestion, the RAS implementation may run
‘ ‘ ’ L | T4 | s | T2 | | (5! | To |0 slower. Hence, we should use the RAS implementation, if it
T is difficult or impossible to minimize the congestion.
L Lniifimei]ive [ird [ tn [ te i
e VI. CONCLUSION
PliErr i | iwié i | imag i | imad i | Pmad i | Pas |2 . . .
‘ i ’ PRt | P T4 | | P | P M4 | i g | P Mg | We have presented a novel algorithmic technique called
. . log w
‘ ’ PRy | PRy | T | | T rag | | g | | g | |3 the random address Shlf't that achieves expected O(—loglogw)
B e e memory access congestion for any memory access requests
‘ ’ rzg | ,-28 | T27 | rze | ”5 | 724 |4 by a warp of w threads. In part.icula}r, the congestion of
the contiguous memory access is still 1. We have also
‘ ’ | | | 2 | | T3 | i m3d | |5 applied the random address shift to the matrix transpose

Figure 8. Arrangement of random numbers 7;(0 < ¢ < 31) in local
registers 7[*]

threads, and the number of banks in the shared memory is
32. Table II shows the experimental results including the
congestion and the running time. Note that the expected
value of the memory access congestion by the random
address shift is 3.50. This value is a bit larger than 3.436
shown in Table I, because no two memory access request is
destined for the same address in the experiments shown in
Table II.

Clearly, if an algorithm has larger congestion, the run-
ning time is longer. Roughly speaking, we can see that
(the total read/write congestions) x 40 + 100 gives good
approximations of the running time in nanoseconds. For
example, the RAS implementation of the DRDW transpose
takes total congestion 2, and thus, the approximation value
is 180, which is very close to actual running time 171.8ns.

From the experimental results, the RAS implementation
for the CRSW transpose and the SRCW transpose is five
times faster than the RAW implementation. However, for
the DRDW transpose, the RAS implementation is slower.
Hence, we can say that an algorithm involves large con-
gestion can be accelerated by the RAS implementation. On
the other hand, if an algorithm is carefully optimized to

on the shared memory of a streaming multiprocessor on
the GeForce GTX TITAN. The experimental results show
that the theoretical analysis on the DMM provides a good
approximation of the performance on the actual GPU. From
the experimental results, we can say that the random address
shift technique is practical and a potent method to reduce
the memory access congestion for the shared memory.
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