
An Optimal Parallel Pre�x-sums Algorithm onthe Memory Mahine Models for GPUsKoji NakanoDepartment of Information Engineering, Hiroshima University,Kagamiyama 1-4-1, Higashi Hiroshima 739-8527, Japannakano�s.hiroshima-u.a.jpAbstrat. The main ontribution of this paper is to show optimal algo-rithms omputing the sum and the pre�x-sums on two memory mahinemodels, the Disrete Memory Mahine (DMM) and the Uni�ed Mem-ory Mahine (UMM). The DMM and the UMM are theoretial parallelomputing models that apture the essene of the shared memory andthe global memory of GPUs. These models have three parameters, thenumber p of threads, the width w of the memory, and the memory aesslateny l. We �rst show that the sum of n numbers an be omputed inO( nw + nlp + l log n) time units on the DMM and the UMM. We then goon to show that 
( nw + nlp + l log n) time units are neessary to omputethe sum. Finally, we show an optimal parallel algorithm that omputesthe pre�x-sums of n numbers in O( nw + nlp + l log n) time units on theDMM and the UMM.Keywords: Memory mahine models, pre�x-sums omputation, parallel algo-rithm, GPU, CUDA1 IntrodutionThe researh of parallel algorithms has a long history of more than 40 years. Se-quential algorithms have been developed mostly on the Random Aess Mahine(RAM) [1℄. In ontrast, sine there are a variety of onnetion methods and pat-terns between proessors and memories, many parallel omputing models havebeen presented and many parallel algorithmi tehniques have been shown onthem. The most well-studied parallel omputing model is the Parallel RandomAess Mahine (PRAM) [5, 7, 19℄, whih onsists of proessors and a sharedmemory. Eah proessor on the PRAM an aess any address of the sharedmemory in a time unit. The PRAM is a good parallel omputing model in thesense that parallelism of eah problem an be revealed by the performane ofparallel algorithms on the PRAM. However, sine the PRAM requires a sharedmemory that an be aessed by all proessors in the same time, it is not feasible.The GPU (Graphial Proessing Unit), is a speialized iruit designed to a-elerate omputation for building and manipulating images [10, 11, 13, 20℄. LatestGPUs are designed for general purpose omputing and an perform omputation



2 Koji Nakanoin appliations traditionally handled by the CPU. Hene, GPUs have reentlyattrated the attention of many appliation developers [10, 16℄. NVIDIA providesa parallel omputing arhiteture alled CUDA (Compute Uni�ed Devie Arhi-teture) [18℄, the omputing engine for NVIDIA GPUs. CUDA gives developersaess to the virtual instrution set and memory of the parallel omputationalelements in NVIDIA GPUs. In many ases, GPUs are more eÆient than multi-ore proessors [14℄, sine they have hundreds of proessor ores and very highmemory bandwidth.CUDA uses two types of memories in the NVIDIA GPUs: the global memoryand the shared memory [18℄. The global memory is implemented as an o�-hipDRAM, and has large apaity, say, 1.5-6 Gbytes, but its aess lateny is verylong. The shared memory is an extremely fast on-hip memory with lower apa-ity, say, 16-64 Kbytes. The eÆient usage of the global memory and the sharedmemory is a key for CUDA developers to aelerate appliations using GPUs.In partiular, we need to onsider the oalesing of the global memory aessand the bank onit of the shared memory aess [13, 14, 17℄. To maximize thebandwidth between the GPU and the DRAM hips, the onseutive addresses ofthe global memory must be aessed in the same time. Thus, threads of CUDAshould perform oalesed aess when they aess to the global memory. The ad-dress spae of the shared memory is mapped into several physial memory banks.If two or more threads aess to the same memory banks in the same time, theaess requests are proessed sequentially. Hene to maximize the memory aessperformane, threads should aess to distint memory banks to avoid the bankonits of the memory aess.In our previous paper [15℄, we have introdued two models, the Disrete Mem-ory Mahine (DMM) and the Uni�ed Memory Mahine (UMM), whih reetthe essential features of the shared memory and the global memory of NVIDIAGPUs. The outline of the arhitetures of the DMM and the UMM are illus-trated in Figure 1. In both arhitetures, a sea of threads (Ts) is onneted tothe memory banks (MBs) through the memory management unit (MMU). Eahthread is a Random Aess Mahine (RAM) [1℄, whih an exeute one of thefundamental operations in a time unit. We do not disuss the arhiteture ofthe sea of threads in this paper, but we an imagine that it onsists of a set ofmulti-ore proessors whih an exeute many threads in parallel and/or in time-sharing manner. Threads are exeuted in SIMD [4℄ fashion, and the proessorsrun on the same program and work on the di�erent data.MBs onstitute a single address spae of the memory. A single address spaeof the memory is mapped to the MBs in an interleaved way suh that the wordof data of address i is stored in the (i mod w)-th bank, where w is the numberof MBs. The main di�erene of the two arhitetures is the onnetion of theaddress line between the MMU and the MBs, whih an transfer an addressvalue. In the DMM, the address lines onnet the MBs and the MMU separately,while a single address line from the MMU is onneted to the MBs in the UMM.Hene, in the UMM, the same address value is broadast to every MB, and thesame address of the MBs an be aessed in eah time unit. On the other hand,



Title Suppressed Due to Exessive Length 3di�erent addresses of the MBs an be aessed in the DMM. Sine the memoryaess of the UMM is more restrited than that of the DMM, the UMM is lesspowerful than the DMM.
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data lineaddress lineFig. 1. The arhitetures of the DMM and the UMMThe performane of algorithms of the PRAM is usually evaluated using twoparameters: the size n of the input and the number p of proessors. For example,it is well known that the sum of n numbers an be omputed in O(np + logn)time on the PRAM [5℄. We will use four parameters, the size n of the input,the number p of threads, the width w and the lateny l of the memory whenwe evaluate the performane of algorithms on the DMM and on the UMM. Thewidth w is the number of memory banks and the lateny l is the number of timeunits to omplete the memory aess. Hene, the performane of algorithms onthe DMM and the UMM is evaluated as a funtion of n (the size of a problem),p (the number of threads), w (the width of a memory), and l (the lateny of amemory). In NVIDIA GPUs, the width w of global and shared memory is 16or 32. Also, the lateny l of the global memory is several hundreds lok yles.In CUDA, a grid an have at most 65535 bloks with at most 1024 threadseah [18℄. Thus, the number p of threads an be 65 million.Suppose that an array a of n numbers is given. The pre�x-sums of a is thearray of size n suh that the i-th (0 � i � n � 1) element is a[0℄ + a[1℄ + � � �+a[i℄. Clearly, a sequential algorithm an ompute the pre�x sums by exeutinga[i+1℄ a[i+1℄+ a[i℄ for all i (0 � i � n� 1). The omputation of the pre�x-sums of an array is one of the most important algorithmi proedures. Manyalgorithms suh as graph algorithms, geometri algorithms, image proessing andmatrix omputation all pre�x-sums algorithms as a subroutine. In partiular,many parallel algorithms uses a parallel pre�x-sums algorithm. For example,



4 Koji Nakanothe pre�x-sums omputation is used to obtain the pre-order, the in-order, andthe post-order of a rooted binary tree in parallel [5℄. So, it is very important todevelop eÆient parallel algorithms for the pre�x-sums.The main ontribution of this paper is to show an optimal pre�x-sums algo-rithm on the DMM and the UMM. We �rst show that the sum of n numbers anbe omputed in O( nw + nlp + l logn) time units using p threads on the DMM andthe UMM with width w and lateny l. We then go on to disuss the lower boundof the time omplexity and show three lower bounds, 
( nw )-time bandwidth lim-itation, 
(nlp )-time lateny limitation, and 
(l logn)-time redution limitation.From this disussion, the omputation of the sum and the pre�x-sums takes atleast 
( nw + nlp + l logn) time units on the DMM and the UMM. Thus, the sumalgorithm is optimal. For the omputation of the pre�x-sums, we �rst evaluatethe omputing time of a well-known naive algorithm [8, 19℄. We show that a naivepre�x-sums algorithm runs in O(n lognw + nl lognp + l logn) time. Hene, this naivepre�x-sums algorithm is not optimal and it has an overhead of fator logn bothfor the bandwidth limitation nw and for the lateny limitation nlp . Finally, weshow an optimal parallel algorithm that omputes the pre�x-sums of n numbersin O( nw + nlp + l logn) time units on the DMM and the UMM. However, thisalgorithm uses work spae of size n and it may not be aeptable if the size n ofthe input is very large. We also show that the pre�x-sums an also be omputedin the same time units, even if work spae an store only min(p log p; wl log(wl))numbers.Several tehniques for omputing the pre�x-sums on GPUs have been shownin [8℄. They have presented a ompliated data routing tehnique to avoid thebank onit in the omputation of the pre�x-sums. However, their algorithmperforms memory aess to distant loations in parallel and it performs non-oalesed memory aess. Hene it is not eÆient for the UMM, that is, theglobal memory of GPUs. In [9℄ a work-eÆient parallel algorithm for pre�x-sums on the GPU has been presented. However, the algorithm uses work spaeof n logn, and also the performane of the algorithm has not been evaluated.This paper is organized as follows. Setion 2 reviews the Disrete MemoryMahine (DMM) and the Uni�ed Memory Mahine (UMM) introdued in ourprevious paper [15℄. In Setion 3, we evaluate the omputing time of the ontigu-ous memory aess to the memory of the DMM and the UMM. The ontiguousmemory aess is a key ingredient of parallel algorithm development on theDMM and the UMM. Using the ontiguous aess, we show that the sum of nnumbers an be omputed in O( nw + nlp + l logn) time units in Setion 4. We thengo on to disuss the lower bound of the time omplexity and show three lowerbounds, 
( nw )-time bandwidth limitation, 
(nlp )-time lateny limitation, and
(l logn)-time redution limitation in Setion 5. Setion 6 shows a naive pre�x-sums algorithm, whih runs in O(n lognw + nl lognp + l logn) time units. Finally, weshow an optimal parallel pre�x-sums algorithm running in O( nw + nlp + l logn)time units. Setion 8 o�ers onlusion of this paper.



Title Suppressed Due to Exessive Length 52 Parallel Memory Mahines: DMM and UMMThe main purpose of this setion is to review the Disrete Memory Mahine(DMM) and the Uni�ed Memory Mahine (UMM). introdued in our previouspaper [15℄.We �rst de�ne the Disrete Memory Mahine (DMM) of width w and latenyl. Let m[i℄ (i � 0) denote a memory ell of address i in the memory. Let B[j℄ =fm[j℄;m[j + w℄;m[j + 2w℄;m[j + 3w℄; : : :g (0 � j � w � 1) denote the j-thbank of the memory. Clearly, a memory ell m[i℄ is in the (i mod w)-th memorybank. We assume that memory ells in di�erent banks an be aessed in a timeunit, but no two memory ells in the same bank an be aessed in a time unit.Also, we assume that l time units are neessary to omplete an aess requestand ontinuous requests are proessed in a pipeline fashion through the MMU.Thus, it takes k + l� 1 time units to omplete k aess requests to a partiularbank. 0 1 2 34 5 6 78 9 10 1112 13 14 15
0 1 2 34 5 6 78 9 10 1112 13 14 15memory banks of DMM
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address groups of UMMFig. 2. Banks and address groups for w = 4We assume that p threads are partitioned into pw groups of w threads alledwarps. More spei�ally, p threads are partitioned into pw warps W (0);W (1),: : :, W ( pw � 1) suh that W (i) = fT (i � w);T (i � w + 1); : : : ;T ((i + 1) � w � 1)g(0 � i � pw � 1). Warps are dispathed for memory aess in turn, and wthreads in a warp try to aess the memory in the same time. In other words,W (0);W (1); : : : ;W (w � 1) are dispathed in a round-robin manner if at leastone thread in a warp requests memory aess. If no thread in a warp needsmemory aess, suh warp is not dispathed for memory aess. When W (i)is dispathed, w thread in W (i) sends memory aess requests, one request perthread, to the memory. We also assume that a thread annot send a new memoryaess request until the previous memory aess request is ompleted. Hene, ifa thread send a memory aess request, it must wait l time units to send a newmemory aess request.



6 Koji NakanoFor the reader's bene�t, let us evaluate the time for memory aess usingFigure 3 on the DMM for p = 8, w = 4, and l = 3. In the �gure, p = 8threads are partitioned into pw = 2 warps W (0) = fT (0); T (1); T (2); T (3)gand W (1) = fT (4);T (5);T (6);T (7)g. As illustrated in the �gure, 4 threadsin W (0) try to aess m[0℄;m[1℄;m[6℄, and m[10℄, and those in W (1) try to a-ess m[8℄;m[9℄;m[14℄, and m[15℄. The time for the memory aess are evaluatedunder the assumption that memory aess are proessed by imaginary l pipelinestages with w registers eah as illustrated in the �gure. Eah pipeline registerin the �rst stage reeives memory aess request from threads in an dispathedwarp. Eah i-th (0 � i � w � 1) pipeline register reeives the request to thei-th memory bank. In eah time unit, a memory request in a pipeline register ismoved to the next one. We assume that the memory aess ompletes when therequest reahes the last pipeline register.Note that, the arhiteture of pipeline registers illustrated in Figure 3 areimaginary, and it is used only for evaluating the omputing time. The atual ar-hiteture should involves a multistage interonnetion network [6, 12℄ or sortingnetwork [2, 3℄, to route memory aess requests.Let us evaluate the time for memory aess on the DMM. First, aess requestfor m[0℄;m[1℄;m[6℄ are sent to the �rst stage. Sine m[6℄ and m[10℄ are in thesame bank B[2℄, their memory requests annot be sent to the �rst stage in thesame time. Next, the m[10℄ is sent to the �rst stage. After that, memory aessrequests for m[8℄;m[9℄;m[14℄;m[15℄ are sent in the same time, beause they arein di�erent memory banks. Finally, after l � 1 = 2 time units, these memoryrequests are proessed. Hene, the DMM takes 5 time units to omplete thememory aess.We next de�ne the Uni�ed Memory Mahine (UMM)) of width w as follows.Let A[j℄ = fm[j �w℄;m[j �w+1℄; : : : ;m[(j +1) �w� 1℄g denote the j-th addressgroup. We assume that memory ells in the same address group are proessedin the same time. However, if they are in the di�erent groups, one time unitis neessary for eah of the groups. Also, similarly to the DMM, p threads arepartitioned into warps and eah warp aess to the memory in turn.Again, let us evaluate the time for memory aess using Figure 3 on theUMM for p = 8, w = 4, and l = 3. The memory aess requests by W (0) are inthree address groups. Thus, three time units are neessary to send them to the�rst stage. Next, two time units are neessary to send memory aess requestsby W (1), beause they are in two address groups. After that, it takes l � 1 = 2time units to proess the memory aess requests. Hene, totally 3 + 2 + 2 = 7time units are neessary to omplete all memory aess.3 Contiguous Memory AessThe main purpose of this setion is to review the ontiguous memory aess onthe DMM and the UMM shown in [15℄. Suppose that an array a of size n (� p)is given. We use p threads to aess to all of n memory ells in a suh that eahthread aesses to np memory ells. Note that \aessing to" an be \reading
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Fig. 3. An example of memory aess



8 Koji Nakanofrom" or \writing in." Let a[i℄ (0 � i � n� 1)denote the i-th memory ells in a.When n � p, the ontiguous aess an be performed as follows:[Contiguous memory aess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) aess to a[p � t+ i℄We will evaluate the omputing time. For eah t (0 � t � np � 1), p threadsaess to p memory ells a[pt℄; a[pt+ 1℄; : : : ; a[p(t+1)� 1℄. This memory aessis performed by pw warps in turn. More spei�ally, �rst, w threads in W (0)aess to a[pt℄; a[pt+1℄; : : : ; a[pt+w�1℄. After that, p threads in W (1) aess toa[pt+w℄; a[pt+w+1℄; : : : ; a[pt+2w� 1℄, and the same operation is repeatedlyperformed. In general, p threads in W (j) (0 � j � pw � 1) aesses to a[pt +jw℄; a[pt + jw + 1℄; : : : ; a[pt+ (j + 1)w � 1℄. Sine w memory ells are aessedby a warp are in the di�erent bank, the aess an be ompleted in l time unitson the DMM. Also, these w memory ells are in the same address group, andthus, the aess an be ompleted in l time units on the UMM.Reall that the memory aess are proessed in pipeline fashion suh that wthreads in eah W (j) send w memory aess requests in one time unit. Hene, pthreads pw warps send p memory aess requests in pw time units. After that, thelast memory aess requests byW ( pw�1) are ompleted in l�1 time units. Thus,p threads aess to p memory ells a[pt℄; a[pt+1℄; : : : ; a[p(t+1)� 1℄ in pw + l� 1time units. Sine this memory aess is repeated np times, the ontiguous aessan be done in np � ( pw + l� 1) = O( nw + nlp ) time units.If n < p then, the ontiguous memory aess an be simply done using nthreads out of the p threads. If this is the ase, the memory aess an be doneby O( nw + l) time units. Therefore, we have,Lemma 1. The ontiguous aess to an array of size n an be done in O( nw +nlp +l) time using p threads on the UMM and the DMM with width w and latenyl.4 An optimal parallel algorithm for omputing the sumThe main purpose of this setion is to show an optimal parallel algorithm foromputing the sum on the memory mahine models.Let a be an array of n = 2m numbers. Let us show an algorithm to omputethe sum a[0℄+a[1℄+ � � �+a[n�1℄. The algorithm uses a well-known parallel om-puting tehnique whih repeatedly omputes the sums of pairs. We implementthis tehnique to perform ontiguous memory aess. The details are spelled outas follows:[Optimal algorithm for omputing the sum℄for t m� 1 down to 0 dofor i 0 to 2t � 1 do in parallela[i℄ a[i℄ + a[i+ 2t℄



Title Suppressed Due to Exessive Length 9Figure 4 illustrates how the sums of pairs are omputed. From the �gure, thereader should have no diÆulty to on�rm that this algorithm ompute the sumorretly.

Fig. 4. Illustrating the summing algorithm for n numbersWe assume that p threads to ompute the sum. For eah t (0 � t � m� 1),2t operations \a[i℄ a[i℄+a[i+2t℄" are performed. These operation involve thefollowing memory aess operations:{ reading from a[0℄; a[1℄; : : : ; a[2t � 1℄,{ reading from a[2t℄; a[2t + 1℄; : : : ; a[2 � 2t � 1℄, and{ writing in a[0℄; a[1℄; : : : ; a[2t � 1℄,Sine these memory aess operations are ontiguous, they an be done in O( 2tw +2tlp + l) time using p threads both on the DMM and on the UMM with width wand lateny l from Lemma 1. Thus, the total omputing time ism�1Xt=0 O(2tw + 2tlp + l) = O(2mw + 2mlp + lm)= O( nw + nlp + l logn)and we have,Lemma 2. The sum of n numbers an be omputed in O( nw + nlp + l logn) timeunits using p threads on the DMM and on the UMM with width w and lateny l.5 The lower bound of the omputing time and thelateny hidingLet us disuss the lower bound of the time neessary to ompute the sum on theDMM and the UMM to show that our parallel summing algorithm for Lemma 2



10 Koji Nakanois optimal. We will show three lower bounds, 
( nw )-time bandwidth limitation,
(nlp )-time lateny limitation, and 
(l logn)-time redution limitation.Sine the width of the memory is w, at most w numbers in the memory anbe read in a time unit. Clearly, all of the n numbers must be read to omputethe sum. Hene, 
( nw ) time units are neessary to ompute the sum. We all the
( nw )-time lower bound the bandwidth limitation.Sine the memory aess takes lateny l, a thread an send at most tl memoryread requests in t time units. Thus, p threads an send at most ptl total memoryrequests in t time units. Sine at least n numbers in the memory must be readto ompute the sum, ptl � n must be satis�ed. Thus, at least t = 
(nlp ) timeunits are neessary. We all the 
(nlp )-time lower bound the lateny limitation.Eah thread an perform a binary operation suh as addition in a time unit.If at least one of the two operands of a binary operation is stored in the sharedmemory, it takes at least l time units to obtain the resulting value. Clearly,addition operation must be performed n � 1 times to ompute the sum of nnumbers. The omputation of the sum using addition is represented using abinary tree with n leaves and n� 1 internal nodes. The root of the binary treeorresponds to the sum. From basi graph theory results, there exists a pathfrom the root to a leaf, whih has at least logn internal nodes. The additionorresponds to eah internal node takes l time units. Thus, it takes at least
(l logn) time to ompute the sum, regardless of the number p of threads. Weall the 
(l logn)-time lower bound the redution limitation.From the disussion above, we have,Theorem 1. Both the DMM and the UMM with p threads, width w, and latenyl takes at least 
( nw + nlp + l logn) time units to ompute the sum of n numbers.From Theorem 1, the parallel algorithm for ommuting the sum shown forLemma 2 is optimal.Let us disuss about three limitations. From a pratial point of view, width wand lateny l are onstant values that annot be hanged by parallel omputerusers. These values are �xed when a parallel omputer based on the memorymahine models is manufatured. Also, the size n of the input are variable.Programmers an adjust the number p of threads to obtain the best performane.Thus, the value of the lateny limitation nlp an be hanged by programmers.Let us ompare the values of three limitations.wl � p: From nw � nlp , the bandwidth limitation dominates the lateny limita-tion.wl � nlogn : From nw � l logn, the bandwidth limitation dominates the redu-tion limitation.p � nlogn : From nlp � l logn, the lateny limitation dominates the redutionlimitation.Thus, if both wl � p and wl � nlogn are satis�ed, the omputing time is of thesum algorithm for Lemma 2 is O( nw ). Note that the memory mahine modelshave wl imaginary registers. Sine more than one memory requests by a thread



Title Suppressed Due to Exessive Length 11an not be stored in imaginary pipeline registers, wl � p must be satis�ed to �llall the pipeline registers with memory aess requests by p threads. Sine thesum algorithm has logn stages and expeted nlog n memory aess requests aresent to the imaginary pipeline registers, wl � nlogn must also be satis�ed to �llall the pipeline registers with nlog n memory aess requests. From the disussionabove, to hide the lateny, the number p of threads must be at least the numberwl of pipeline registers and the size n of input must be at least wl log(wl).6 A naive pre�x-sums algorithmWe assume that an array a with n = 2m numbers is given. Let us start witha well-known naive pre�x-sums algorithm for array a [8, 9℄, and show it is notoptimal. The naive pre�x-sums algorithm is written as follows:[A naive pre�x-sums algorithm℄for t 0 to p� 1 dofor i 2t to n� 1 do in parallela[i℄ a[i℄ + a[i� 2t℄Figure 5 illustrates how the pre�x-sums are omputed.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-1111-1212-1313-1414-150 0-1 0-2 0-3 1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-1210-1311-1412-150 0-1 0-2 0-3 0-4 0-5 0-6 0-7 1-8 2-9 3-10 4-11 5-12 6-13 7-14 8-150 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-15Fig. 5. Illustrating the naive pre�x-sums algorithm for n numbersWe assume that p threads are available and evaluate the omputing time ofthe naive pre�x-sums algorithm. The following three memory aess operationsare performed for eah t (0 � t � p� 1): an be done by{ reading from a[2t℄; a[2t + 1℄; : : : ; a[n� 2℄,{ reading from a[2t + 1℄; a[2t + 2℄; : : : ; a[n� 1℄, and{ writing in a[2t + 1℄; a[2t + 2℄; : : : ; a[n� 1℄.



12 Koji NakanoEah of the three operations an be done by ontiguous memory aess for n�2tmemory ells. Hene, the omputing time of eah t is O(n�2tw + (n�2t)lp + l) fromLemma 1. The total omputing time is:p�1Xt=0 O(n� 2tw + (n� 2t)lp + l) = O(n lognw + nl lognp );Thus, we have,Lemma 3. The naive pre�x-sums algorithm runs in O(n lognw + nl lognp ) timeunits using p threads on the DMM and on the UMM with width w and lateny l.Clearly, from Theorem 1, the naive algorithm is not optimal.7 Our optimal pre�x-sums algorithmThis setion shows an optimal pre�x-sums algorithm running in O(n lognw + nlp +l logn) time units. We use m� 1 arrays a1; a2; : : : am�1 as work spae. Eah at(1 � t � m � 1) an store 2t � 1 numbers. Thus, the total size of the m � 1arrays is no more than (21� 1)+ (22� 1)+ � � �+(2m�1� 1) = 2m�m < n. Weassume that the input of n numbers are stored in array am of size n.The algorithm has two stages. In the �rst stage, interval sums are stored inthe m � 1 arrays. The seond stage uses interval sums in the m � 1 arrays toompute the resulting pre�x-sums. The details of the �rst stage is spelled out asfollows.[Compute the interval sums℄for t m� 1 down to 1 dofor i 0 to 2t � 1 do in parallelat[i℄ at+1[2 � i℄ + at+1[2 � i+ 1℄Figure 6 illustrated how the interval sums are omputed. When this programterminates, eah at[i℄ (1 � t � m� 1; 0 � i � 2t� 2) stores at[i � n2t ℄ + at[i � n2t +1℄ + � � �+ at[(i+ 1) � n2t � 1℄.In the seond stage, the pre�x-sums are omputed by omputing the sumsof the interval sums as follows:[Compute the sums of the interval sums℄for t 1 to m� 1 dofor i 0 to 2t � 2 do in parallelbeginat+1[2 � i+ 1℄ at[i℄at+1[2 � i+ 2℄ at+1[2 � i+ 2℄ + at[i℄endam[n� 1℄ am[n� 2℄ + am[n� 1℄



Title Suppressed Due to Exessive Length 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150-1 2-3 4-5 6-7 8-9 10-11 12-130-3 4-7 8-110-7
a4a3a2a1 Fig. 6. Illustrating the omputation of interval sums in m� 1 arrays.0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 150-1 0-3 0-5 0-7 0-9 0-11 0-130-3 0-7 0-110-7
a4a3a2a1 opy addFig. 7. Illustrating the omputation of interval sums in m� 1 arrays.Figure 7 shows how the pre�x-sums are omputed. In the �gure, \at+1[2�i+1℄ at[i℄" and \at+1[2 �i+2℄ at+1[2 �i+2℄+at[i℄" orrespond to \opy" and \add",respetively.When this algorithm terminates, eah ap[i℄ (0 � i � 2t�) stores the pre�xsum ap[0℄ + ap[1℄ + � � � + ap[i℄. We assume that p threads are available andevaluate the omputing time. The �rst stage involves the following memoryaess operations for eah t (1 � t � m� 1):{ reading from at+1[0℄; at+1[2℄; : : : ; at+1[2t � 2℄,{ reading from at+1[1℄; at+1[3℄; : : : ; at+1[2t � 1℄, and{ writing in at[0℄; at[1℄; : : : ; at[2t � 1℄.Sine every two addresses is aessed, these four memory aess operations areessentially ontiguous aess and they an be done in O( 2tw + 2tlp + l) time units.Therefore, the total omputing time of the �rst stage isp�1Xt=1 O(2tw + 2tlp + l) = O( nw + nlp + l logn):The seond stage onsists of the following memory aess operations for eah t(1 � t � m� 1):{ reading from at[0℄; at[1℄; : : : ; at[2t � 2℄,



14 Koji Nakano{ reading from at+1[2℄; at+1[4℄; : : : ; at+1[2t+1 � 2℄,{ writing in at+1[1℄; at+1[3℄; : : : ; at+1[2t+1 � 3℄, and{ writing in at+1[2℄; at+1[4℄; : : : ; at+1[2t+1 � 2℄.Similarly, these operations an be done in O( 2tw + 2tlp + l) time units. Hene, thetotal omputing time of the seond stage is also O( nw + nlp + l logn). Thus, wehave,Theorem 2. The pre�x-sums of n numbers an be omputed in O( nw + nlp +l logn) time units using p threads on the DMM and on the UMM with width wand lateny l if work spae of size n is available.From Theorem 1, the lower bound of the omputing time of the pre�x-sums is
( nw + nlp + l logn).Suppose that n is very large and work spae of size n is not available. We willshow that, if work spae no smaller than min(p log p; wl log(wl)) is available, thepre�x-sums an also be omputed in O( nw + nlp + l logn). Let k be an arbitrarynumber suh that p � k � n. We partition the input a with n numbers intonk groups with k (� p) numbers eah. Eah t-th group (0 � t � nk � 1) has knumbers a[tk℄; a[tk + 1℄; : : : ; a[(t + 1)k � 1℄. The pre�x-sums of every group isomputed using p threads in turn as follows.[Sequential-parallel pre�x-sums algorithm℄for t 0 to nk � 1 dobeginif(t > 0) a[tk℄ a[tk℄ + a[tk � 1℄Compute the pre�x-sums of k numbers a[tk℄; a[tk + 1℄; : : : ; a[(t+ 1)k � 1℄endIt should be lear that this algorithm omputes the pre�x-sums orretly. Thepre�x-sums of k numbers an be omputed in O( kw + klp + l log k). The om-putation of the pre�x-sums is repeated nk times, the total omputing time isO( kw + klp + l log k) � nk = O( nw + nlp + nl log kk ). Thus, we have,Corollary 1. The pre�x-sums of n numbers an be omputed in O( nw + nlp +nl log kk ) time units using p threads on the DMM and on the UMM with width wand lateny l if work spae of size k is available.If k � p log p then, nl log kk � nl log(p log p)p log p < nlp . If k � wl log(wl) then nl log kk �nl log(wl log(wl))wl log(wl) < nw . Thus, if k � min(p log p; wl log(wl)) then the omputingtime is O( nw + nlp ).8 ConlusionThe main ontribution of this paper is to show that an optimal parallel pre�x-sums algorithm that runs in O( nw + nlp + l logn) time units. This algorithm useswork spae of size min(n; p log p; wl log(wl)).
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