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Abstract. The main contribution of this paper is to show optimal algo-
rithms computing the sum and the prefix-sums on two memory machine
models, the Discrete Memory Machine (DMM) and the Unified Mem-
ory Machine (UMM). The DMM and the UMM are theoretical parallel
computing models that capture the essence of the shared memory and
the global memory of GPUs. These models have three parameters, the
number p of threads, the width w of the memory, and the memory access
latency . We first show that the sum of n numbers can be computed in
oz + "71 + llogn) time units on the DMM and the UMM. We then go
on to show that £2(Z + "71 +1logn) time units are necessary to compute
the sum. Finally, we show an optimal parallel algorithm that computes
the prefix-sums of n numbers in O(Z + % + llogn) time units on the
DMM and the UMM.
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1 Introduction

The research of parallel algorithms has a long history of more than 40 years. Se-
quential algorithms have been developed mostly on the Random Access Machine
(RAM) [1]. In contrast, since there are a variety of connection methods and pat-
terns between processors and memories, many parallel computing models have
been presented and many parallel algorithmic techniques have been shown on
them. The most well-studied parallel computing model is the Parallel Random
Access Machine (PRAM) [5,7,19], which consists of processors and a shared
memory. Each processor on the PRAM can access any address of the shared
memory in a time unit. The PRAM is a good parallel computing model in the
sense that parallelism of each problem can be revealed by the performance of
parallel algorithms on the PRAM. However, since the PRAM requires a shared
memory that can be accessed by all processors in the same time, it is not feasible.

The GPU (Graphical Processing Unit), is a specialized circuit designed to ac-
celerate computation for building and manipulating images [10, 11,13, 20]. Latest
GPUs are designed for general purpose computing and can perform computation
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in applications traditionally handled by the CPU. Hence, GPUs have recently
attracted the attention of many application developers [10,16]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Archi-
tecture) [18], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are more efficient than multi-
core processors [14], since they have hundreds of processor cores and very high
memory bandwidth.

CUDA uses two types of memories in the NVIDIA GPUs: the global memory
and the shared memory [18]. The global memory is implemented as an off-chip
DRAM, and has large capacity, say, 1.5-6 Gbytes, but its access latency is very
long. The shared memory is an extremely fast on-chip memory with lower capac-
ity, say, 16-64 Kbytes. The efficient usage of the global memory and the shared
memory is a key for CUDA developers to accelerate applications using GPUs.
In particular, we need to consider the coalescing of the global memory access
and the bank conflict of the shared memory access [13,14,17]. To maximize the
bandwidth between the GPU and the DRAM chips, the consecutive addresses of
the global memory must be accessed in the same time. Thus, threads of CUDA
should perform coalesced access when they access to the global memory. The ad-
dress space of the shared memory is mapped into several physical memory banks.
If two or more threads access to the same memory banks in the same time, the
access requests are processed sequentially. Hence to maximize the memory access
performance, threads should access to distinct memory banks to avoid the bank
conflicts of the memory access.

In our previous paper [15], we have introduced two models, the Discrete Mem-
ory Machine (DMM) and the Unified Memory Machine (UMM), which reflect
the essential features of the shared memory and the global memory of NVIDIA
GPUs. The outline of the architectures of the DMM and the UMM are illus-
trated in Figure 1. In both architectures, a sea of threads (Ts) is connected to
the memory banks (MBs) through the memory management unit (MMU). Each
thread is a Random Access Machine (RAM) [1], which can execute one of the
fundamental operations in a time unit. We do not discuss the architecture of
the sea of threads in this paper, but we can imagine that it consists of a set of
multi-core processors which can execute many threads in parallel and/or in time-
sharing manner. Threads are executed in SIMD [4] fashion, and the processors
run on the same program and work on the different data.

MBs constitute a single address space of the memory. A single address space
of the memory is mapped to the MBs in an interleaved way such that the word
of data of address i is stored in the (i mod w)-th bank, where w is the number
of MBs. The main difference of the two architectures is the connection of the
address line between the MMU and the MBs, which can transfer an address
value. In the DMM, the address lines connect the MBs and the MMU separately,
while a single address line from the MMU is connected to the MBs in the UMM.
Hence, in the UMM, the same address value is broadcast to every MB, and the
same address of the MBs can be accessed in each time unit. On the other hand,
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different addresses of the MBs can be accessed in the DMM. Since the memory
access of the UMM is more restricted than that of the DMM, the UMM is less
powerful than the DMM.

a sea of threads a sea of threads
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Fig. 1. The architectures of the DMM and the UMM

The performance of algorithms of the PRAM is usually evaluated using two
parameters: the size n of the input and the number p of processors. For example,
it is well known that the sum of n numbers can be computed in O(7 + logn)
time on the PRAM [5]. We will use four parameters, the size n of the input,
the number p of threads, the width w and the latency [ of the memory when
we evaluate the performance of algorithms on the DMM and on the UMM. The
width w is the number of memory banks and the latency [ is the number of time
units to complete the memory access. Hence, the performance of algorithms on
the DMM and the UMM is evaluated as a function of n (the size of a problem),
p (the number of threads), w (the width of a memory), and ! (the latency of a
memory). In NVIDIA GPUs, the width w of global and shared memory is 16
or 32. Also, the latency [ of the global memory is several hundreds clock cycles.
In CUDA, a grid can have at most 65535 blocks with at most 1024 threads
each [18]. Thus, the number p of threads can be 65 million.

Suppose that an array a of n numbers is given. The prefix-sums of a is the
array of size n such that the i-th (0 < i < n — 1) element is a[0] + a[1] + --- +
ali]. Clearly, a sequential algorithm can compute the prefix sums by executing
afi +1] < afi + 1] + afi] for all ¢ (0 <4 < n —1). The computation of the prefix-
sums of an array is one of the most important algorithmic procedures. Many
algorithms such as graph algorithms, geometric algorithms, image processing and
matrix computation call prefix-sums algorithms as a subroutine. In particular,
many parallel algorithms uses a parallel prefix-sums algorithm. For example,
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the prefix-sums computation is used to obtain the pre-order, the in-order, and
the post-order of a rooted binary tree in parallel [5]. So, it is very important to
develop efficient parallel algorithms for the prefix-sums.

The main contribution of this paper is to show an optimal prefix-sums algo-
rithm on the DMM and the UMM. We first show that the sum of n numbers can
be computed in O(7 + %l +llogn) time units using p threads on the DMM and
the UMM with width w and latency I. We then go on to discuss the lower bound
of the time complexity and show three lower bounds, §2(:*)-time bandwidth lim-
itation, 2(™)-time latency limitation, and 2(I logn)-time reduction limitation.
From this discussion, the computation of the sum and the prefix-sums takes at
least 2(2 + %l + llogn) time units on the DMM and the UMM. Thus, the sum
algorithm is optimal. For the computation of the prefix-sums, we first evaluate
the computing time of a well-known naive algorithm [8, 19]. We show that a naive
prefix-sums algorithm runs in O(%g—" + %g—n +1logn) time. Hence, this naive
prefix-sums algorithm is not optimal and it has an overhead of factor logn both
for the bandwidth limitation > and for the latency limitation ol - Finally, we
show an optimal parallel algorithm that computes the prefix-sums of n numbers
in O(& + ”;l + llogn) time units on the DMM and the UMM. However, this
algorithm uses work space of size n and it may not be acceptable if the size n of
the input is very large. We also show that the prefix-sums can also be computed
in the same time units, even if work space can store only min(plog p, wl log(wl))
numbers.

Several techniques for computing the prefix-sums on GPUs have been shown
in [8]. They have presented a complicated data routing technique to avoid the
bank conflict in the computation of the prefix-sums. However, their algorithm
performs memory access to distant locations in parallel and it performs non-
coalesced memory access. Hence it is not efficient for the UMM, that is, the
global memory of GPUs. In [9] a work-efficient parallel algorithm for prefix-
sums on the GPU has been presented. However, the algorithm uses work space
of nlogn, and also the performance of the algorithm has not been evaluated.

This paper is organized as follows. Section 2 reviews the Discrete Memory
Machine (DMM) and the Unified Memory Machine (UMM) introduced in our
previous paper [15]. In Section 3, we evaluate the computing time of the contigu-
ous memory access to the memory of the DMM and the UMM. The contiguous
memory access is a key ingredient of parallel algorithm development on the
DMM and the UMM. Using the contiguous access, we show that the sum of n
numbers can be computed in O(Z + %’ +1logn) time units in Section 4. We then
go on to discuss the lower bound of the time complexity and show three lower
bounds, (2(3)-time bandwidth limitation, Q(%l)—time latency limitation, and
£2(l1log n)-time reduction limitation in Section 5. Section 6 shows a naive prefix-

sums algorithm, which runs in O(% + % +1logn) time units. Finally, we

show an optimal parallel prefix-sums algorithm running in O(7% + %l +llogn)
time units. Section 8 offers conclusion of this paper.
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2 Parallel Memory Machines: DMM and UMM

The main purpose of this section is to review the Discrete Memory Machine
(DMM) and the Unified Memory Machine (UMM). introduced in our previous
paper [15].

We first define the Discrete Memory Machine (DMM) of width w and latency
l. Let m[i] (i > 0) denote a memory cell of address i in the memory. Let B[j] =
{m[j],m[j + w],m[j + 2w],m[j + 3w],...} (0 < j < w — 1) denote the j-th
bank of the memory. Clearly, a memory cell m[i] is in the (i mod w)-th memory
bank. We assume that memory cells in different banks can be accessed in a time
unit, but no two memory cells in the same bank can be accessed in a time unit.
Also, we assume that [ time units are necessary to complete an access request
and continuous requests are processed in a pipeline fashion through the MMU.
Thus, it takes k + 1 — 1 time units to complete k access requests to a particular
bank.

8|9 lltof[11| [8 | 9 |10 |11 |a[y

12 (13 ]]|14 || 15 12 | 13 | 14 | 15 |A[3]
I T T T 1

memory banks of DMM address groups of UMM

Fig. 2. Banks and address groups for w =4

We assume that p threads are partitioned into % groups of w threads called
warps. More specifically, p threads are partitioned into £ warps W (0), W (1),
o, W(£ —1) such that W(i) = {T(i w), T(i - w+1),...,T(({+1) - w—1)}
(0 < i < 2 —1). Warps are dispatched for memory access in turn, and w
threads in a warp try to access the memory in the same time. In other words,
W(0), W(1),...,W(w — 1) are dispatched in a round-robin manner if at least
one thread in a warp requests memory access. If no thread in a warp needs
memory access, such warp is not dispatched for memory access. When W (i)
is dispatched, w thread in W (i) sends memory access requests, one request per
thread, to the memory. We also assume that a thread cannot send a new memory
access request until the previous memory access request is completed. Hence, if
a thread send a memory access request, it must wait [ time units to send a new
memory access request.
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For the reader’s benefit, let us evaluate the time for memory access using
Figure 3 on the DMM for p = 8, w = 4, and [ = 3. In the figure, p = 8
threads are partitioned into £ = 2 warps W(0) = {7(0),7(1),7(2),T(3)}
and W (1) = {T(4), T(5), T(6), T(7)}. As illustrated in the figure, 4 threads
in W(0) try to access m[0], m[1], m[6], and m[10], and those in W(1) try to ac-
cess m[8], m[9], m[14], and m[15]. The time for the memory access are evaluated
under the assumption that memory access are processed by imaginary [ pipeline
stages with w registers each as illustrated in the figure. Each pipeline register
in the first stage receives memory access request from threads in an dispatched
warp. Each i-th (0 < i < w — 1) pipeline register receives the request to the
i-th memory bank. In each time unit, a memory request in a pipeline register is
moved to the next one. We assume that the memory access completes when the
request reaches the last pipeline register.

Note that, the architecture of pipeline registers illustrated in Figure 3 are
imaginary, and it is used only for evaluating the computing time. The actual ar-
chitecture should involves a multistage interconnection network [6, 12] or sorting
network [2, 3], to route memory access requests.

Let us evaluate the time for memory access on the DMM. First, access request
for m[0],m[1],m[6] are sent to the first stage. Since m[6] and m[10] are in the
same bank B[2], their memory requests cannot be sent to the first stage in the
same time. Next, the m[10] is sent to the first stage. After that, memory access
requests for m/[8], m[9], m[14], m[15] are sent in the same time, because they are
in different memory banks. Finally, after [ — 1 = 2 time units, these memory
requests are processed. Hence, the DMM takes 5 time units to complete the
memory access.

We next define the Unified Memory Machine (UMM)) of width w as follows.
Let Alj] = {m[j-w],m[j-w+1],...,m[(j +1) - w — 1]} denote the j-th address
group. We assume that memory cells in the same address group are processed
in the same time. However, if they are in the different groups, one time unit
is necessary for each of the groups. Also, similarly to the DMM, p threads are
partitioned into warps and each warp access to the memory in turn.

Again, let us evaluate the time for memory access using Figure 3 on the
UMM for p =8, w =4, and | = 3. The memory access requests by W (0) are in
three address groups. Thus, three time units are necessary to send them to the
first stage. Next, two time units are necessary to send memory access requests
by W (1), because they are in two address groups. After that, it takes I — 1 =2
time units to process the memory access requests. Hence, totally 3+2+2 =17
time units are necessary to complete all memory access.

3 Contiguous Memory Access

The main purpose of this section is to review the contiguous memory access on
the DMM and the UMM shown in [15]. Suppose that an array a of size n (> p)
is given. We use p threads to access to all of n memory cells in a such that each

thread accesses to % memory cells. Note that “accessing to” can be “reading
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from” or “writing in.” Let a[i] (0 < i < n — 1)denote the i-th memory cells in a.
When n > p, the contiguous access can be performed as follows:

[Contiguous memory access]
fort < 0to 2 —1do
for i <~ 0 to p — 1 do in parallel
T'(i) access to a[p - t + ]

We will evaluate the computing time. For each ¢ (0 <t < % — 1), p threads
access to p memory cells a[pt],a[pt + 1],...,a[p(t + 1) — 1]. This memory access
is performed by £ warps in turn. More specifically, first, w threads in W (0)
access to a[pt], a[pt+1],...,a[pt +w — 1]. After that, p threads in W (1) access to

a[pt + wl,a[pt + w+ 1], ..., a[pt + 2w — 1], and the same operation is repeatedly
performed. In general, p threads in W (j) (0 < j < £ —1) accesses to a[pt +
Jjw],alpt + jw +1],...,a[pt + (j + 1)w — 1]. Since w memory cells are accessed

by a warp are in the different bank, the access can be completed in ! time units
on the DMM. Also, these w memory cells are in the same address group, and
thus, the access can be completed in [ time units on the UMM.

Recall that the memory access are processed in pipeline fashion such that w
threads in each W (j) send w memory access requests in one time unit. Hence, p
threads % warps send p memory access requests in % time units. After that, the
last memory access requests by W(% —1) are completed in [ —1 time units. Thus,
p threads access to p memory cells apt], a[pt+1],...,a[p(t+1) —1]in £ +1 -1
time units. Since this memory access is repeated % times, the contiguous access
can be done in 2 - (£ +1—-1) =O0(¢ + %l) time units.

If n < p then, the contiguous memory access can be simply done using n
threads out of the p threads. If this is the case, the memory access can be done
by O(Z +1) time units. Therefore, we have,

Lemma 1. The contiguous access to an array of size n can be done in O( +
%l +1) time using p threads on the UMM and the DMM with width w and latency

4 An optimal parallel algorithm for computing the sum

The main purpose of this section is to show an optimal parallel algorithm for
computing the sum on the memory machine models.

Let a be an array of n = 2" numbers. Let us show an algorithm to compute
the sum a[0] +a[1]+- - -+a[n —1]. The algorithm uses a well-known parallel com-
puting technique which repeatedly computes the sums of pairs. We implement
this technique to perform contiguous memory access. The details are spelled out
as follows:

[Optimal algorithm for computing the sum)]
for t <+ m — 1 down to 0 do
for i < 0 to 2t — 1 do in parallel
ali] < afi] + ali + 2]
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Figure 4 illustrates how the sums of pairs are computed. From the figure, the
reader should have no difficulty to confirm that this algorithm compute the sum
correctly.

Fig. 4. Illustrating the summing algorithm for n numbers

We assume that p threads to compute the sum. For each ¢ (0 <t <m — 1),
2! operations “a[i] ¢ a[i] + a[i +2!]” are performed. These operation involve the
following memory access operations:

— reading from a[0],a[1],...,a[2¢ — 1],
— reading from a[2?],a[2! +1],...,a[2- 2! — 1], and
— writing in a[0], a[1],...,a[2! — 1],
Since these memory access operations are contiguous, they can be done in O(% +

%l + 1) time using p threads both on the DMM and on the UMM with width w
and latency [/ from Lemma 1. Thus, the total computing time is

m—1
2t 2] om  9m]
O(—+—+1)=0(—+—+1Im)
w o p
— 0™ 4+ ™ 4 1ogn)
w o p

and we have,

Lemma 2. The sum of n numbers can be computed in O(Z + ol 4 [logn) time
units using p threads on the DMM and on the UMM with width w and latency [.

5 The lower bound of the computing time and the
latency hiding

Let us discuss the lower bound of the time necessary to compute the sum on the
DMM and the UMM to show that our parallel summing algorithm for Lemma 2
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is optimal. We will show three lower bounds, 2(1*)-time bandwidth limitation,
Q(%’)—time latency limitation, and £2(Ilogn)-time reduction limitation.

Since the width of the memory is w, at most w numbers in the memory can
be read in a time unit. Clearly, all of the n numbers must be read to compute
the sum. Hence, {2(11) time units are necessary to compute the sum. We call the
2()-time lower bound the bandwidth limitation.

Since the memory access takes latency [, a thread can send at most % memory
read requests in ¢ time units. Thus, p threads can send at most th total memory
requests in ¢ time units. Since at least n numbers in the memory must be read
to compute the sum, th > n must be satisfied. Thus, at least t = Q(%l) time

units are necessary. We call the Q(%l)—time lower bound the latency limitation.

Each thread can perform a binary operation such as addition in a time unit.
If at least one of the two operands of a binary operation is stored in the shared
memory, it takes at least [ time units to obtain the resulting value. Clearly,
addition operation must be performed n — 1 times to compute the sum of n
numbers. The computation of the sum using addition is represented using a
binary tree with n leaves and n — 1 internal nodes. The root of the binary tree
corresponds to the sum. From basic graph theory results, there exists a path
from the root to a leaf, which has at least logn internal nodes. The addition
corresponds to each internal node takes [ time units. Thus, it takes at least
2(llogn) time to compute the sum, regardless of the number p of threads. We
call the 2(Ilogn)-time lower bound the reduction limitation.

From the discussion above, we have,

Theorem 1. Both the DMM and the UMM with p threads, width w, and latency
[ takes at least 2(3 + %l +1llogn) time units to compute the sum of n numbers.

From Theorem 1, the parallel algorithm for commuting the sum shown for
Lemma 2 is optimal.

Let us discuss about three limitations. From a practical point of view, width w
and latency [ are constant values that cannot be changed by parallel computer
users. These values are fixed when a parallel computer based on the memory
machine models is manufactured. Also, the size n of the input are variable.
Programmers can adjust the number p of threads to obtain the best performance.
Thus, the value of the latency limitation 2 can be changed by programmers.

Let us compare the values of three limitations.

wl < p: From & > %l, the bandwidth limitation dominates the latency limita-
tion.

wl < %: From 2 > llogn, the bandwidth limitation dominates the reduc-
tion limitation.

p < %: From %l > llogn, the latency limitation dominates the reduction
limitation.

Thus, if both wl < p and wl < $ are satisfied, the computing time is of the

sum algorithm for Lemma 2 is O(;:). Note that the memory machine models
have wl imaginary registers. Since more than one memory requests by a thread
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can not be stored in imaginary pipeline registers, wl < p must be satisfied to fill
all the pipeline registers with memory access requests by p threads. Since the
sum algorithm has logn stages and expected 10% memory access requests are
sent to the imaginary pipeline reglsters wl < o must also be satisfied to fill
all the pipeline registers with =% memory access requests. From the discussion
above, to hide the latency, the number p of threads must be at least the number
wl of pipeline registers and the size n of input must be at least wllog(wl).

6 A naive prefix-sums algorithm

We assume that an array a with n = 2™ numbers is given. Let us start with
a well-known naive prefix-sums algorithm for array a [8,9], and show it is not
optimal. The naive prefix-sums algorithm is written as follows:

[A naive prefix-sums algorithm]
fort+< 0top—1do
for i + 2! to n — 1 do in parallel
ali] < afi] + ali — 2]

Figure 5 illustrates how the prefix-sums are computed.
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Fig. 5. Illustrating the naive prefix-sums algorithm for n numbers

We assume that p threads are available and evaluate the computing time of
the naive prefix-sums algorithm. The following three memory access operations
are performed for each ¢ (0 < ¢ < p — 1): can be done by

— reading from a[2?],a[2! +1],... [n - 2],
— reading from a[2! + 1], a[2¢ + 2] ,a[n — 1], and
— writing in a[2¢ + 1],a[2! + 2],. .. [n —1].
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Each of the three operations can be done by contiguous memory access for n —2?

memory cells. Hence, the computing time of each ¢ is O(”*th + (H_T?t)l +1) from
Lemma 1. The total computing time is:

p ]
10 l (0]

);

1
_ 2t _ 2t
o (A A L
w p w p
t=0
Thus, we have,

Lemma 3. The naive prefiz-sums algorithm runs in O(%g—” + wg_n) time
units using p threads on the DMM and on the UMM with width w and latency [.

Clearly, from Theorem 1, the naive algorithm is not optimal.

7 Our optimal prefix-sums algorithm

This section shows an optimal prefix-sums algorithm running in O(%g—n + ”;l +
llogn) time units. We use m — 1 arrays aj, as,...a;,—1 as work space. Each a;
(1 <t < m—1) can store 2¢ — 1 numbers. Thus, the total size of the m — 1
arrays is no more than (2! — 1)+ (22 = 1) +---+ (2" "1 = 1) = 2™ —m < n. We
assume that the input of n numbers are stored in array a,, of size n.

The algorithm has two stages. In the first stage, interval sums are stored in
the m — 1 arrays. The second stage uses interval sums in the m — 1 arrays to
compute the resulting prefix-sums. The details of the first stage is spelled out as
follows.

[Compute the interval sums]
for t < m — 1 down to 1 do
for 4 < 0 to 2t — 1 do in parallel
at[i] — at+1[2 . l] + at+1[2 -1+ 1]

Figure 6 illustrated how the interval sums are computed. When this program
terminates, each a[i] (1 <t <m —1,0 <i <2 —2) stores a;[i- 5] + asfi - 3+ +
U+ Faf(i+1) 5 —1].

In the second stage, the prefix-sums are computed by computing the sums
of the interval sums as follows:

[Compute the sums of the interval sums]
fort+ 1tom—1do
for i < 0 to 2t — 2 do in parallel
begin
at+1[2 -1+ 1] — at[i]
at+1[2 -1+ 2] «— at+1[2 -1+ 2] + at[i]
end
amn — 1] < am[n — 2] + apn — 1]



Title Suppressed Due to Excessive Length 13
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Fig. 6. Illustrating the computation of interval sums in m — 1 arrays.

as| 0 |01|02|03|04|05|06| 7|08|09|o1o|011|012|o13|014|15|
|

as[ 0t | 03 [ 05 | 07 | 09 [ o1 [ 013 |
az | 0-3 [ 0-7 [ 0-11 |
a1| 0—:( I COpY ==--- > add ——

Fig. 7. Illustrating the computation of interval sums in m — 1 arrays.

Figure 7 shows how the prefix-sums are computed. In the figure, “as11[2-i+1] +
a:[i]” and “ai+1[2-142] ¢ ary1[2-i+2]+a.[i]” correspond to “copy” and “add”,
respectively.

When this algorlthm terminates, each a,fi] (0 < i < 2'—) stores the prefix
sum a,[0] + ap[l] + --- + ap[i]. We assume that p threads are available and
evaluate the computing time. The first stage involves the following memory
access operations for each ¢ (1 <t <m — 1):

- reading from Q41 [0], Q41 [2], . ,at+1[2t — 2],
— reading from az11[1], at1[3], - ., arp1[28 — 1], and
— writing in a;[0], a;[1], ..., a;[2t — 1].

Since every two addresses is accessed, these four memory access operations are
essentially contiguous access and they can be done in O( 2 L4 1) time units.
Therefore, the total computing time of the first stage is

p—1
2t 2t l
DO+ 4D = 02 + % 4 1logn).
p w p
The second stage consists of the following memory access operations for each ¢

(1<t<m-1):

— reading from a:[0], a;[1], ..., a:[2¢ — 2],
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— reading from a;y1[2],as41[4], ..., a1 [207 = 2],
— writing in a;41[1], az+1[3], - - -, a1 [26T! — 3], and
— writing in a;41[2], ai+1[4], - . ., app [207 = 2).

Similarly, these operations can be done in O(% + 2%1 + 1) time units. Hence, the

total computing time of the second stage is also O(Z + %l + llogn). Thus, we
have,

Theorem 2. The prefiv-sums of n numbers can be computed in O(7: + ”;l +
llogn) time units using p threads on the DMM and on the UMM with width w
and latency | if work space of size n is available.

From Theorem 1, the lower bound of the computing time of the prefix-sums is
2%+ 5 +1logn).

Suppose that n is very large and work space of size n is not available. We will
show that, if work space no smaller than min(plog p, wllog(wl)) is available, the
prefix-sums can also be computed in O( + ”;l + llogn). Let k be an arbitrary
number such that p < k£ < n. We partition the input a with n numbers into
& groups with k (> p) numbers each. Each ¢-th group (0 <t < # — 1) has k
numbers a[tk],a[tk + 1],...,a[(t + 1)k — 1]. The prefix-sums of every group is
computed using p threads in turn as follows.

[Sequential-parallel prefix-sums algorithm)]
fort+0to ¢ —1do
begin
if(t > 0) a[tk] « a[tk] + altk — 1]
Compute the prefix-sums of k£ numbers a[tk], a[tk +1],...,a[(t + 1)k — 1]
end

It should be clear that this algorithm computes the prefix-sums correctly. The
prefix-sums of k£ numbers can be computed in O(% + % + llogk). The com-
putation of the prefix-sums is repeated 7 times, the total computing time is

O(% + % +1llogk) - %2 =0(2 + %’ + %g—k) Thus, we have,

Corollary 1. The prefiz-sums of n numbers can be computed in O(Z + %l +
%) time units using p threads on the DMM and on the UMM with width w
and latency l if work space of size k is available.

If £ > plogp then, ”“,‘c’g’“ < ”“(;gl(opglggp) < ”;l. If £ > wilog(wl) then % <

< 2. Thus, if k¥ > min(plogp,wllog(wl)) then the computing

nllog(wllog(wl))
wl log(wl)

time is O( + %l)

8 Conclusion

The main contribution of this paper is to show that an optimal parallel prefix-
sums algorithm that runs in O(Z + %l + llogn) time units. This algorithm uses
work space of size min(n, p log p, wl log(wl)).
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We believe that two memory machine models, the DMM and the UMM
are promising as platforms of development of algorithmic techniques for GPUs.
We plan to develop efficient algorithms for graph-theoretic problems, geometric
problems, and image processing problems on the DMM and the UMM
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