
An Optimal Parallel Pre�x-sums Algorithm onthe Memory Ma
hine Models for GPUsKoji NakanoDepartment of Information Engineering, Hiroshima University,Kagamiyama 1-4-1, Higashi Hiroshima 739-8527, Japannakano�
s.hiroshima-u.a
.jpAbstra
t. The main
ontribution of this paper is to show optimal algo-rithms
omputing the sum and the pre�x-sums on two memory ma
hinemodels, the Dis
rete Memory Ma
hine (DMM) and the Uni�ed Mem-ory Ma
hine (UMM). The DMM and the UMM are theoreti
al parallel
omputing models that
apture the essen
e of the shared memory andthe global memory of GPUs. These models have three parameters, thenumber p of threads, the width w of the memory, and the memory a

esslaten
y l. We �rst show that the sum of n numbers
an be
omputed inO(nw + nlp + l log n) time units on the DMM and the UMM. We then goon to show that
(nw + nlp + l log n) time units are ne
essary to
omputethe sum. Finally, we show an optimal parallel algorithm that
omputesthe pre�x-sums of n numbers in O(nw + nlp + l log n) time units on theDMM and the UMM.Keywords: Memory ma
hine models, pre�x-sums
omputation, parallel algo-rithm, GPU, CUDA1 Introdu
tionThe resear
h of parallel algorithms has a long history of more than 40 years. Se-quential algorithms have been developed mostly on the Random A

ess Ma
hine(RAM) [1℄. In
ontrast, sin
e there are a variety of
onne
tion methods and pat-terns between pro
essors and memories, many parallel
omputing models havebeen presented and many parallel algorithmi
 te
hniques have been shown onthem. The most well-studied parallel
omputing model is the Parallel RandomA

ess Ma
hine (PRAM) [5, 7, 19℄, whi
h
onsists of pro
essors and a sharedmemory. Ea
h pro
essor on the PRAM
an a

ess any address of the sharedmemory in a time unit. The PRAM is a good parallel
omputing model in thesense that parallelism of ea
h problem
an be revealed by the performan
e ofparallel algorithms on the PRAM. However, sin
e the PRAM requires a sharedmemory that
an be a

essed by all pro
essors in the same time, it is not feasible.The GPU (Graphi
al Pro
essing Unit), is a spe
ialized
ir
uit designed to a
-
elerate
omputation for building and manipulating images [10, 11, 13, 20℄. LatestGPUs are designed for general purpose
omputing and
an perform
omputation

2 Koji Nakanoin appli
ations traditionally handled by the CPU. Hen
e, GPUs have re
entlyattra
ted the attention of many appli
ation developers [10, 16℄. NVIDIA providesa parallel
omputing ar
hite
ture
alled CUDA (Compute Uni�ed Devi
e Ar
hi-te
ture) [18℄, the
omputing engine for NVIDIA GPUs. CUDA gives developersa

ess to the virtual instru
tion set and memory of the parallel
omputationalelements in NVIDIA GPUs. In many
ases, GPUs are more eÆ
ient than multi-
ore pro
essors [14℄, sin
e they have hundreds of pro
essor
ores and very highmemory bandwidth.CUDA uses two types of memories in the NVIDIA GPUs: the global memoryand the shared memory [18℄. The global memory is implemented as an o�-
hipDRAM, and has large
apa
ity, say, 1.5-6 Gbytes, but its a

ess laten
y is verylong. The shared memory is an extremely fast on-
hip memory with lower
apa
-ity, say, 16-64 Kbytes. The eÆ
ient usage of the global memory and the sharedmemory is a key for CUDA developers to a

elerate appli
ations using GPUs.In parti
ular, we need to
onsider the
oales
ing of the global memory a

essand the bank
on
i
t of the shared memory a

ess [13, 14, 17℄. To maximize thebandwidth between the GPU and the DRAM
hips, the
onse
utive addresses ofthe global memory must be a

essed in the same time. Thus, threads of CUDAshould perform
oales
ed a

ess when they a

ess to the global memory. The ad-dress spa
e of the shared memory is mapped into several physi
al memory banks.If two or more threads a

ess to the same memory banks in the same time, thea

ess requests are pro
essed sequentially. Hen
e to maximize the memory a

essperforman
e, threads should a

ess to distin
t memory banks to avoid the bank
on
i
ts of the memory a

ess.In our previous paper [15℄, we have introdu
ed two models, the Dis
rete Mem-ory Ma
hine (DMM) and the Uni�ed Memory Ma
hine (UMM), whi
h re
e
tthe essential features of the shared memory and the global memory of NVIDIAGPUs. The outline of the ar
hite
tures of the DMM and the UMM are illus-trated in Figure 1. In both ar
hite
tures, a sea of threads (Ts) is
onne
ted tothe memory banks (MBs) through the memory management unit (MMU). Ea
hthread is a Random A

ess Ma
hine (RAM) [1℄, whi
h
an exe
ute one of thefundamental operations in a time unit. We do not dis
uss the ar
hite
ture ofthe sea of threads in this paper, but we
an imagine that it
onsists of a set ofmulti-
ore pro
essors whi
h
an exe
ute many threads in parallel and/or in time-sharing manner. Threads are exe
uted in SIMD [4℄ fashion, and the pro
essorsrun on the same program and work on the di�erent data.MBs
onstitute a single address spa
e of the memory. A single address spa
eof the memory is mapped to the MBs in an interleaved way su
h that the wordof data of address i is stored in the (i mod w)-th bank, where w is the numberof MBs. The main di�eren
e of the two ar
hite
tures is the
onne
tion of theaddress line between the MMU and the MBs, whi
h
an transfer an addressvalue. In the DMM, the address lines
onne
t the MBs and the MMU separately,while a single address line from the MMU is
onne
ted to the MBs in the UMM.Hen
e, in the UMM, the same address value is broad
ast to every MB, and thesame address of the MBs
an be a

essed in ea
h time unit. On the other hand,

Title Suppressed Due to Ex
essive Length 3di�erent addresses of the MBs
an be a

essed in the DMM. Sin
e the memorya

ess of the UMM is more restri
ted than that of the DMM, the UMM is lesspowerful than the DMM.

DMM UMMMMUMB MB MB MB MMUMB MB MB MB
T T T T T TT T T T T TT T T T T TT T T T T TT T T T T TT T T T T TT T T T T TT T T T T Ta sea of threads a sea of threads

data lineaddress lineFig. 1. The ar
hite
tures of the DMM and the UMMThe performan
e of algorithms of the PRAM is usually evaluated using twoparameters: the size n of the input and the number p of pro
essors. For example,it is well known that the sum of n numbers
an be
omputed in O(np + logn)time on the PRAM [5℄. We will use four parameters, the size n of the input,the number p of threads, the width w and the laten
y l of the memory whenwe evaluate the performan
e of algorithms on the DMM and on the UMM. Thewidth w is the number of memory banks and the laten
y l is the number of timeunits to
omplete the memory a

ess. Hen
e, the performan
e of algorithms onthe DMM and the UMM is evaluated as a fun
tion of n (the size of a problem),p (the number of threads), w (the width of a memory), and l (the laten
y of amemory). In NVIDIA GPUs, the width w of global and shared memory is 16or 32. Also, the laten
y l of the global memory is several hundreds
lo
k
y
les.In CUDA, a grid
an have at most 65535 blo
ks with at most 1024 threadsea
h [18℄. Thus, the number p of threads
an be 65 million.Suppose that an array a of n numbers is given. The pre�x-sums of a is thearray of size n su
h that the i-th (0 � i � n � 1) element is a[0℄ + a[1℄ + � � �+a[i℄. Clearly, a sequential algorithm
an
ompute the pre�x sums by exe
utinga[i+1℄ a[i+1℄+ a[i℄ for all i (0 � i � n� 1). The
omputation of the pre�x-sums of an array is one of the most important algorithmi
 pro
edures. Manyalgorithms su
h as graph algorithms, geometri
 algorithms, image pro
essing andmatrix
omputation
all pre�x-sums algorithms as a subroutine. In parti
ular,many parallel algorithms uses a parallel pre�x-sums algorithm. For example,

4 Koji Nakanothe pre�x-sums
omputation is used to obtain the pre-order, the in-order, andthe post-order of a rooted binary tree in parallel [5℄. So, it is very important todevelop eÆ
ient parallel algorithms for the pre�x-sums.The main
ontribution of this paper is to show an optimal pre�x-sums algo-rithm on the DMM and the UMM. We �rst show that the sum of n numbers
anbe
omputed in O(nw + nlp + l logn) time units using p threads on the DMM andthe UMM with width w and laten
y l. We then go on to dis
uss the lower boundof the time
omplexity and show three lower bounds,
(nw)-time bandwidth lim-itation,
(nlp)-time laten
y limitation, and
(l logn)-time redu
tion limitation.From this dis
ussion, the
omputation of the sum and the pre�x-sums takes atleast
(nw + nlp + l logn) time units on the DMM and the UMM. Thus, the sumalgorithm is optimal. For the
omputation of the pre�x-sums, we �rst evaluatethe
omputing time of a well-known naive algorithm [8, 19℄. We show that a naivepre�x-sums algorithm runs in O(n lognw + nl lognp + l logn) time. Hen
e, this naivepre�x-sums algorithm is not optimal and it has an overhead of fa
tor logn bothfor the bandwidth limitation nw and for the laten
y limitation nlp . Finally, weshow an optimal parallel algorithm that
omputes the pre�x-sums of n numbersin O(nw + nlp + l logn) time units on the DMM and the UMM. However, thisalgorithm uses work spa
e of size n and it may not be a

eptable if the size n ofthe input is very large. We also show that the pre�x-sums
an also be
omputedin the same time units, even if work spa
e
an store only min(p log p; wl log(wl))numbers.Several te
hniques for
omputing the pre�x-sums on GPUs have been shownin [8℄. They have presented a
ompli
ated data routing te
hnique to avoid thebank
on
i
t in the
omputation of the pre�x-sums. However, their algorithmperforms memory a

ess to distant lo
ations in parallel and it performs non-
oales
ed memory a

ess. Hen
e it is not eÆ
ient for the UMM, that is, theglobal memory of GPUs. In [9℄ a work-eÆ
ient parallel algorithm for pre�x-sums on the GPU has been presented. However, the algorithm uses work spa
eof n logn, and also the performan
e of the algorithm has not been evaluated.This paper is organized as follows. Se
tion 2 reviews the Dis
rete MemoryMa
hine (DMM) and the Uni�ed Memory Ma
hine (UMM) introdu
ed in ourprevious paper [15℄. In Se
tion 3, we evaluate the
omputing time of the
ontigu-ous memory a

ess to the memory of the DMM and the UMM. The
ontiguousmemory a

ess is a key ingredient of parallel algorithm development on theDMM and the UMM. Using the
ontiguous a

ess, we show that the sum of nnumbers
an be
omputed in O(nw + nlp + l logn) time units in Se
tion 4. We thengo on to dis
uss the lower bound of the time
omplexity and show three lowerbounds,
(nw)-time bandwidth limitation,
(nlp)-time laten
y limitation, and
(l logn)-time redu
tion limitation in Se
tion 5. Se
tion 6 shows a naive pre�x-sums algorithm, whi
h runs in O(n lognw + nl lognp + l logn) time units. Finally, weshow an optimal parallel pre�x-sums algorithm running in O(nw + nlp + l logn)time units. Se
tion 8 o�ers
on
lusion of this paper.

Title Suppressed Due to Ex
essive Length 52 Parallel Memory Ma
hines: DMM and UMMThe main purpose of this se
tion is to review the Dis
rete Memory Ma
hine(DMM) and the Uni�ed Memory Ma
hine (UMM). introdu
ed in our previouspaper [15℄.We �rst de�ne the Dis
rete Memory Ma
hine (DMM) of width w and laten
yl. Let m[i℄ (i � 0) denote a memory
ell of address i in the memory. Let B[j℄ =fm[j℄;m[j + w℄;m[j + 2w℄;m[j + 3w℄; : : :g (0 � j � w � 1) denote the j-thbank of the memory. Clearly, a memory
ell m[i℄ is in the (i mod w)-th memorybank. We assume that memory
ells in di�erent banks
an be a

essed in a timeunit, but no two memory
ells in the same bank
an be a

essed in a time unit.Also, we assume that l time units are ne
essary to
omplete an a

ess requestand
ontinuous requests are pro
essed in a pipeline fashion through the MMU.Thus, it takes k + l� 1 time units to
omplete k a

ess requests to a parti
ularbank. 0 1 2 34 5 6 78 9 10 1112 13 14 15
0 1 2 34 5 6 78 9 10 1112 13 14 15memory banks of DMM

A[0℄A[1℄A[2℄A[3℄
B[0℄ B[1℄ B[2℄ B[3℄

address groups of UMMFig. 2. Banks and address groups for w = 4We assume that p threads are partitioned into pw groups of w threads
alledwarps. More spe
i�
ally, p threads are partitioned into pw warps W (0);W (1),: : :, W (pw � 1) su
h that W (i) = fT (i � w);T (i � w + 1); : : : ;T ((i + 1) � w � 1)g(0 � i � pw � 1). Warps are dispat
hed for memory a

ess in turn, and wthreads in a warp try to a

ess the memory in the same time. In other words,W (0);W (1); : : : ;W (w � 1) are dispat
hed in a round-robin manner if at leastone thread in a warp requests memory a

ess. If no thread in a warp needsmemory a

ess, su
h warp is not dispat
hed for memory a

ess. When W (i)is dispat
hed, w thread in W (i) sends memory a

ess requests, one request perthread, to the memory. We also assume that a thread
annot send a new memorya

ess request until the previous memory a

ess request is
ompleted. Hen
e, ifa thread send a memory a

ess request, it must wait l time units to send a newmemory a

ess request.

6 Koji NakanoFor the reader's bene�t, let us evaluate the time for memory a

ess usingFigure 3 on the DMM for p = 8, w = 4, and l = 3. In the �gure, p = 8threads are partitioned into pw = 2 warps W (0) = fT (0); T (1); T (2); T (3)gand W (1) = fT (4);T (5);T (6);T (7)g. As illustrated in the �gure, 4 threadsin W (0) try to a

ess m[0℄;m[1℄;m[6℄, and m[10℄, and those in W (1) try to a
-
ess m[8℄;m[9℄;m[14℄, and m[15℄. The time for the memory a

ess are evaluatedunder the assumption that memory a

ess are pro
essed by imaginary l pipelinestages with w registers ea
h as illustrated in the �gure. Ea
h pipeline registerin the �rst stage re
eives memory a

ess request from threads in an dispat
hedwarp. Ea
h i-th (0 � i � w � 1) pipeline register re
eives the request to thei-th memory bank. In ea
h time unit, a memory request in a pipeline register ismoved to the next one. We assume that the memory a

ess
ompletes when therequest rea
hes the last pipeline register.Note that, the ar
hite
ture of pipeline registers illustrated in Figure 3 areimaginary, and it is used only for evaluating the
omputing time. The a
tual ar-
hite
ture should involves a multistage inter
onne
tion network [6, 12℄ or sortingnetwork [2, 3℄, to route memory a

ess requests.Let us evaluate the time for memory a

ess on the DMM. First, a

ess requestfor m[0℄;m[1℄;m[6℄ are sent to the �rst stage. Sin
e m[6℄ and m[10℄ are in thesame bank B[2℄, their memory requests
annot be sent to the �rst stage in thesame time. Next, the m[10℄ is sent to the �rst stage. After that, memory a

essrequests for m[8℄;m[9℄;m[14℄;m[15℄ are sent in the same time, be
ause they arein di�erent memory banks. Finally, after l � 1 = 2 time units, these memoryrequests are pro
essed. Hen
e, the DMM takes 5 time units to
omplete thememory a

ess.We next de�ne the Uni�ed Memory Ma
hine (UMM)) of width w as follows.Let A[j℄ = fm[j �w℄;m[j �w+1℄; : : : ;m[(j +1) �w� 1℄g denote the j-th addressgroup. We assume that memory
ells in the same address group are pro
essedin the same time. However, if they are in the di�erent groups, one time unitis ne
essary for ea
h of the groups. Also, similarly to the DMM, p threads arepartitioned into warps and ea
h warp a

ess to the memory in turn.Again, let us evaluate the time for memory a

ess using Figure 3 on theUMM for p = 8, w = 4, and l = 3. The memory a

ess requests by W (0) are inthree address groups. Thus, three time units are ne
essary to send them to the�rst stage. Next, two time units are ne
essary to send memory a

ess requestsby W (1), be
ause they are in two address groups. After that, it takes l � 1 = 2time units to pro
ess the memory a

ess requests. Hen
e, totally 3 + 2 + 2 = 7time units are ne
essary to
omplete all memory a

ess.3 Contiguous Memory A

essThe main purpose of this se
tion is to review the
ontiguous memory a

ess onthe DMM and the UMM shown in [15℄. Suppose that an array a of size n (� p)is given. We use p threads to a

ess to all of n memory
ells in a su
h that ea
hthread a

esses to np memory
ells. Note that \a

essing to"
an be \reading

Title Suppressed Due to Ex
essive Length 7
0 1

0 1 6 10
0 1 6 108 9 14 15

108 9 14 15
8 9 14 15

0 1 6

8 9 14 15

60 1
60 1 10
6108 9
108 9 14 1514 15

UMM DMM
2 34 5 71112 13

T (5) T (6) T (7) T (8)0 1 6108 9 14 15
T (0) T (1) T (2) T (3)

Fig. 3. An example of memory a

ess

8 Koji Nakanofrom" or \writing in." Let a[i℄ (0 � i � n� 1)denote the i-th memory
ells in a.When n � p, the
ontiguous a

ess
an be performed as follows:[Contiguous memory a

ess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) a

ess to a[p � t+ i℄We will evaluate the
omputing time. For ea
h t (0 � t � np � 1), p threadsa

ess to p memory
ells a[pt℄; a[pt+ 1℄; : : : ; a[p(t+1)� 1℄. This memory a

essis performed by pw warps in turn. More spe
i�
ally, �rst, w threads in W (0)a

ess to a[pt℄; a[pt+1℄; : : : ; a[pt+w�1℄. After that, p threads in W (1) a

ess toa[pt+w℄; a[pt+w+1℄; : : : ; a[pt+2w� 1℄, and the same operation is repeatedlyperformed. In general, p threads in W (j) (0 � j � pw � 1) a

esses to a[pt +jw℄; a[pt + jw + 1℄; : : : ; a[pt+ (j + 1)w � 1℄. Sin
e w memory
ells are a

essedby a warp are in the di�erent bank, the a

ess
an be
ompleted in l time unitson the DMM. Also, these w memory
ells are in the same address group, andthus, the a

ess
an be
ompleted in l time units on the UMM.Re
all that the memory a

ess are pro
essed in pipeline fashion su
h that wthreads in ea
h W (j) send w memory a

ess requests in one time unit. Hen
e, pthreads pw warps send p memory a

ess requests in pw time units. After that, thelast memory a

ess requests byW (pw�1) are
ompleted in l�1 time units. Thus,p threads a

ess to p memory
ells a[pt℄; a[pt+1℄; : : : ; a[p(t+1)� 1℄ in pw + l� 1time units. Sin
e this memory a

ess is repeated np times, the
ontiguous a

ess
an be done in np � (pw + l� 1) = O(nw + nlp) time units.If n < p then, the
ontiguous memory a

ess
an be simply done using nthreads out of the p threads. If this is the
ase, the memory a

ess
an be doneby O(nw + l) time units. Therefore, we have,Lemma 1. The
ontiguous a

ess to an array of size n
an be done in O(nw +nlp +l) time using p threads on the UMM and the DMM with width w and laten
yl.4 An optimal parallel algorithm for
omputing the sumThe main purpose of this se
tion is to show an optimal parallel algorithm for
omputing the sum on the memory ma
hine models.Let a be an array of n = 2m numbers. Let us show an algorithm to
omputethe sum a[0℄+a[1℄+ � � �+a[n�1℄. The algorithm uses a well-known parallel
om-puting te
hnique whi
h repeatedly
omputes the sums of pairs. We implementthis te
hnique to perform
ontiguous memory a

ess. The details are spelled outas follows:[Optimal algorithm for
omputing the sum℄for t m� 1 down to 0 dofor i 0 to 2t � 1 do in parallela[i℄ a[i℄ + a[i+ 2t℄

Title Suppressed Due to Ex
essive Length 9Figure 4 illustrates how the sums of pairs are
omputed. From the �gure, thereader should have no diÆ
ulty to
on�rm that this algorithm
ompute the sum
orre
tly.

Fig. 4. Illustrating the summing algorithm for n numbersWe assume that p threads to
ompute the sum. For ea
h t (0 � t � m� 1),2t operations \a[i℄ a[i℄+a[i+2t℄" are performed. These operation involve thefollowing memory a

ess operations:{ reading from a[0℄; a[1℄; : : : ; a[2t � 1℄,{ reading from a[2t℄; a[2t + 1℄; : : : ; a[2 � 2t � 1℄, and{ writing in a[0℄; a[1℄; : : : ; a[2t � 1℄,Sin
e these memory a

ess operations are
ontiguous, they
an be done in O(2tw +2tlp + l) time using p threads both on the DMM and on the UMM with width wand laten
y l from Lemma 1. Thus, the total
omputing time ism�1Xt=0 O(2tw + 2tlp + l) = O(2mw + 2mlp + lm)= O(nw + nlp + l logn)and we have,Lemma 2. The sum of n numbers
an be
omputed in O(nw + nlp + l logn) timeunits using p threads on the DMM and on the UMM with width w and laten
y l.5 The lower bound of the
omputing time and thelaten
y hidingLet us dis
uss the lower bound of the time ne
essary to
ompute the sum on theDMM and the UMM to show that our parallel summing algorithm for Lemma 2

10 Koji Nakanois optimal. We will show three lower bounds,
(nw)-time bandwidth limitation,
(nlp)-time laten
y limitation, and
(l logn)-time redu
tion limitation.Sin
e the width of the memory is w, at most w numbers in the memory
anbe read in a time unit. Clearly, all of the n numbers must be read to
omputethe sum. Hen
e,
(nw) time units are ne
essary to
ompute the sum. We
all the
(nw)-time lower bound the bandwidth limitation.Sin
e the memory a

ess takes laten
y l, a thread
an send at most tl memoryread requests in t time units. Thus, p threads
an send at most ptl total memoryrequests in t time units. Sin
e at least n numbers in the memory must be readto
ompute the sum, ptl � n must be satis�ed. Thus, at least t =
(nlp) timeunits are ne
essary. We
all the
(nlp)-time lower bound the laten
y limitation.Ea
h thread
an perform a binary operation su
h as addition in a time unit.If at least one of the two operands of a binary operation is stored in the sharedmemory, it takes at least l time units to obtain the resulting value. Clearly,addition operation must be performed n � 1 times to
ompute the sum of nnumbers. The
omputation of the sum using addition is represented using abinary tree with n leaves and n� 1 internal nodes. The root of the binary tree
orresponds to the sum. From basi
 graph theory results, there exists a pathfrom the root to a leaf, whi
h has at least logn internal nodes. The addition
orresponds to ea
h internal node takes l time units. Thus, it takes at least
(l logn) time to
ompute the sum, regardless of the number p of threads. We
all the
(l logn)-time lower bound the redu
tion limitation.From the dis
ussion above, we have,Theorem 1. Both the DMM and the UMM with p threads, width w, and laten
yl takes at least
(nw + nlp + l logn) time units to
ompute the sum of n numbers.From Theorem 1, the parallel algorithm for
ommuting the sum shown forLemma 2 is optimal.Let us dis
uss about three limitations. From a pra
ti
al point of view, width wand laten
y l are
onstant values that
annot be
hanged by parallel
omputerusers. These values are �xed when a parallel
omputer based on the memoryma
hine models is manufa
tured. Also, the size n of the input are variable.Programmers
an adjust the number p of threads to obtain the best performan
e.Thus, the value of the laten
y limitation nlp
an be
hanged by programmers.Let us
ompare the values of three limitations.wl � p: From nw � nlp , the bandwidth limitation dominates the laten
y limita-tion.wl � nlogn : From nw � l logn, the bandwidth limitation dominates the redu
-tion limitation.p � nlogn : From nlp � l logn, the laten
y limitation dominates the redu
tionlimitation.Thus, if both wl � p and wl � nlogn are satis�ed, the
omputing time is of thesum algorithm for Lemma 2 is O(nw). Note that the memory ma
hine modelshave wl imaginary registers. Sin
e more than one memory requests by a thread

Title Suppressed Due to Ex
essive Length 11
an not be stored in imaginary pipeline registers, wl � p must be satis�ed to �llall the pipeline registers with memory a

ess requests by p threads. Sin
e thesum algorithm has logn stages and expe
ted nlog n memory a

ess requests aresent to the imaginary pipeline registers, wl � nlogn must also be satis�ed to �llall the pipeline registers with nlog n memory a

ess requests. From the dis
ussionabove, to hide the laten
y, the number p of threads must be at least the numberwl of pipeline registers and the size n of input must be at least wl log(wl).6 A naive pre�x-sums algorithmWe assume that an array a with n = 2m numbers is given. Let us start witha well-known naive pre�x-sums algorithm for array a [8, 9℄, and show it is notoptimal. The naive pre�x-sums algorithm is written as follows:[A naive pre�x-sums algorithm℄for t 0 to p� 1 dofor i 2t to n� 1 do in parallela[i℄ a[i℄ + a[i� 2t℄Figure 5 illustrates how the pre�x-sums are
omputed.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-1111-1212-1313-1414-150 0-1 0-2 0-3 1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-1210-1311-1412-150 0-1 0-2 0-3 0-4 0-5 0-6 0-7 1-8 2-9 3-10 4-11 5-12 6-13 7-14 8-150 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-15Fig. 5. Illustrating the naive pre�x-sums algorithm for n numbersWe assume that p threads are available and evaluate the
omputing time ofthe naive pre�x-sums algorithm. The following three memory a

ess operationsare performed for ea
h t (0 � t � p� 1):
an be done by{ reading from a[2t℄; a[2t + 1℄; : : : ; a[n� 2℄,{ reading from a[2t + 1℄; a[2t + 2℄; : : : ; a[n� 1℄, and{ writing in a[2t + 1℄; a[2t + 2℄; : : : ; a[n� 1℄.

12 Koji NakanoEa
h of the three operations
an be done by
ontiguous memory a

ess for n�2tmemory
ells. Hen
e, the
omputing time of ea
h t is O(n�2tw + (n�2t)lp + l) fromLemma 1. The total
omputing time is:p�1Xt=0 O(n� 2tw + (n� 2t)lp + l) = O(n lognw + nl lognp);Thus, we have,Lemma 3. The naive pre�x-sums algorithm runs in O(n lognw + nl lognp) timeunits using p threads on the DMM and on the UMM with width w and laten
y l.Clearly, from Theorem 1, the naive algorithm is not optimal.7 Our optimal pre�x-sums algorithmThis se
tion shows an optimal pre�x-sums algorithm running in O(n lognw + nlp +l logn) time units. We use m� 1 arrays a1; a2; : : : am�1 as work spa
e. Ea
h at(1 � t � m � 1)
an store 2t � 1 numbers. Thus, the total size of the m � 1arrays is no more than (21� 1)+ (22� 1)+ � � �+(2m�1� 1) = 2m�m < n. Weassume that the input of n numbers are stored in array am of size n.The algorithm has two stages. In the �rst stage, interval sums are stored inthe m � 1 arrays. The se
ond stage uses interval sums in the m � 1 arrays to
ompute the resulting pre�x-sums. The details of the �rst stage is spelled out asfollows.[Compute the interval sums℄for t m� 1 down to 1 dofor i 0 to 2t � 1 do in parallelat[i℄ at+1[2 � i℄ + at+1[2 � i+ 1℄Figure 6 illustrated how the interval sums are
omputed. When this programterminates, ea
h at[i℄ (1 � t � m� 1; 0 � i � 2t� 2) stores at[i � n2t ℄ + at[i � n2t +1℄ + � � �+ at[(i+ 1) � n2t � 1℄.In the se
ond stage, the pre�x-sums are
omputed by
omputing the sumsof the interval sums as follows:[Compute the sums of the interval sums℄for t 1 to m� 1 dofor i 0 to 2t � 2 do in parallelbeginat+1[2 � i+ 1℄ at[i℄at+1[2 � i+ 2℄ at+1[2 � i+ 2℄ + at[i℄endam[n� 1℄ am[n� 2℄ + am[n� 1℄

Title Suppressed Due to Ex
essive Length 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150-1 2-3 4-5 6-7 8-9 10-11 12-130-3 4-7 8-110-7
a4a3a2a1 Fig. 6. Illustrating the
omputation of interval sums in m� 1 arrays.0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 150-1 0-3 0-5 0-7 0-9 0-11 0-130-3 0-7 0-110-7
a4a3a2a1
opy addFig. 7. Illustrating the
omputation of interval sums in m� 1 arrays.Figure 7 shows how the pre�x-sums are
omputed. In the �gure, \at+1[2�i+1℄ at[i℄" and \at+1[2 �i+2℄ at+1[2 �i+2℄+at[i℄"
orrespond to \
opy" and \add",respe
tively.When this algorithm terminates, ea
h ap[i℄ (0 � i � 2t�) stores the pre�xsum ap[0℄ + ap[1℄ + � � � + ap[i℄. We assume that p threads are available andevaluate the
omputing time. The �rst stage involves the following memorya

ess operations for ea
h t (1 � t � m� 1):{ reading from at+1[0℄; at+1[2℄; : : : ; at+1[2t � 2℄,{ reading from at+1[1℄; at+1[3℄; : : : ; at+1[2t � 1℄, and{ writing in at[0℄; at[1℄; : : : ; at[2t � 1℄.Sin
e every two addresses is a

essed, these four memory a

ess operations areessentially
ontiguous a

ess and they
an be done in O(2tw + 2tlp + l) time units.Therefore, the total
omputing time of the �rst stage isp�1Xt=1 O(2tw + 2tlp + l) = O(nw + nlp + l logn):The se
ond stage
onsists of the following memory a

ess operations for ea
h t(1 � t � m� 1):{ reading from at[0℄; at[1℄; : : : ; at[2t � 2℄,

14 Koji Nakano{ reading from at+1[2℄; at+1[4℄; : : : ; at+1[2t+1 � 2℄,{ writing in at+1[1℄; at+1[3℄; : : : ; at+1[2t+1 � 3℄, and{ writing in at+1[2℄; at+1[4℄; : : : ; at+1[2t+1 � 2℄.Similarly, these operations
an be done in O(2tw + 2tlp + l) time units. Hen
e, thetotal
omputing time of the se
ond stage is also O(nw + nlp + l logn). Thus, wehave,Theorem 2. The pre�x-sums of n numbers
an be
omputed in O(nw + nlp +l logn) time units using p threads on the DMM and on the UMM with width wand laten
y l if work spa
e of size n is available.From Theorem 1, the lower bound of the
omputing time of the pre�x-sums is
(nw + nlp + l logn).Suppose that n is very large and work spa
e of size n is not available. We willshow that, if work spa
e no smaller than min(p log p; wl log(wl)) is available, thepre�x-sums
an also be
omputed in O(nw + nlp + l logn). Let k be an arbitrarynumber su
h that p � k � n. We partition the input a with n numbers intonk groups with k (� p) numbers ea
h. Ea
h t-th group (0 � t � nk � 1) has knumbers a[tk℄; a[tk + 1℄; : : : ; a[(t + 1)k � 1℄. The pre�x-sums of every group is
omputed using p threads in turn as follows.[Sequential-parallel pre�x-sums algorithm℄for t 0 to nk � 1 dobeginif(t > 0) a[tk℄ a[tk℄ + a[tk � 1℄Compute the pre�x-sums of k numbers a[tk℄; a[tk + 1℄; : : : ; a[(t+ 1)k � 1℄endIt should be
lear that this algorithm
omputes the pre�x-sums
orre
tly. Thepre�x-sums of k numbers
an be
omputed in O(kw + klp + l log k). The
om-putation of the pre�x-sums is repeated nk times, the total
omputing time isO(kw + klp + l log k) � nk = O(nw + nlp + nl log kk). Thus, we have,Corollary 1. The pre�x-sums of n numbers
an be
omputed in O(nw + nlp +nl log kk) time units using p threads on the DMM and on the UMM with width wand laten
y l if work spa
e of size k is available.If k � p log p then, nl log kk � nl log(p log p)p log p < nlp . If k � wl log(wl) then nl log kk �nl log(wl log(wl))wl log(wl) < nw . Thus, if k � min(p log p; wl log(wl)) then the
omputingtime is O(nw + nlp).8 Con
lusionThe main
ontribution of this paper is to show that an optimal parallel pre�x-sums algorithm that runs in O(nw + nlp + l logn) time units. This algorithm useswork spa
e of size min(n; p log p; wl log(wl)).

Title Suppressed Due to Ex
essive Length 15We believe that two memory ma
hine models, the DMM and the UMMare promising as platforms of development of algorithmi
 te
hniques for GPUs.We plan to develop eÆ
ient algorithms for graph-theoreti
 problems, geometri
problems, and image pro
essing problems on the DMM and the UMMReferen
es1. Aho, A.V., Ullman, J.D., Hop
roft, J.E.: Data Stru
tures and Algorithms. AddisonWesley (1983)2. Akl, S.G.: Parallel Sorting Algorithms. A
ademi
 Press (1985)3. Bat
her, K.E.: Sorting networks and their appli
ations. In: Pro
. AFIPS SpringJoint Comput. Conf. vol. 32, pp. 307{314 (1968)4. Flynn, M.J.: Some
omputer organizations and their e�e
tiveness. IEEE Transa
-tions on Computers C-21, 948{960 (1872)5. Gibbons, A., Rytter, W.: EÆ
ient Parallel Algorithms. Cambridge University Press(1988)6. Gottlieb, A., Grishman, R., Kruskal, C.P., M
Auli�e, K.P., Rudolph, L., Snir, M.:The nyu ultra
omputer { designing an MIMD shared memory parallel
omputer.IEEE Trans. on Computers C-32(2), 175 { 189 (Feb 1983)7. Grama, A., Karypis, G., Kumar, V., Gupta, A.: Introdu
tion to Parallel Comput-ing. Addison Wesley (2003)8. Harris, M., Sengupta, S., Owens, J.D.: Chapter 39. parallel pre�x sum (s
an) withCUDA. In: GPU Gems 3. Addison-Wesley (2007)9. Hillis, W.D., Steele, Jr., G.L.: Data parallel algorithms. Commun. ACM 29(12),1170{1183 (De
 1986), http://doi.a
m.org/10.1145/7902.790310. Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)11. Ito, Y., Ogawa, K., Nakano, K.: Fast ellipse dete
tion algorithm using hough trans-form on the GPU. In: Pro
. of International Conferen
e on Networking and Com-puting. pp. 313{319 (De
 2011)12. Lawrie, D.H.: A

ess and alignment of data in an array pro
essor. IEEE Trans. onComputers C-24(12), 1145{ 1155 (De
 1975)13. Man, D., Uda, K., Ito, Y., Nakano, K.: A GPU implementation of
omputingeu
lidean distan
e map with eÆ
ient memory a

ess. In: Pro
. of InternationalConferen
e on Networking and Computing. pp. 68{76 (De
 2011)14. Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a parallelalgorithm for
omputing eu
lidean distan
e map in multi
ore pro
essors and GPUs.International Journal of Networking and Computing 1, 260{276 (July 2011)15. Nakano, K.: Simple memory ma
hine models for GPUs. In: Pro
. of InternationalParallel and Distributed Pro
essing Symposium Workshops. pp. 788{797 (May2012)16. Nishida, K., Ito, Y., Nakano, K.: A

elerating the dynami
 programming for thematrix
hain produ
t on the GPU. In: Pro
. of International Conferen
e on Net-working and Computing. pp. 320{326 (De
 2011)17. NVIDIA Corporation: NVIDIA CUDA C best pra
ti
e guide version 3.1 (2010)18. NVIDIA Corporation: NVIDIA CUDA C programming guide version 4.0 (2011)19. Quinn, M.J.: Parallel Computing: Theory and Pra
ti
e. M
Graw-Hill (1994)20. U
hida, A., Ito, Y., Nakano, K.: Fast and a

urate template mat
hing using pixelrearrangement on the GPU. In: Pro
. of International Conferen
e on Networkingand Computing. pp. 153{159 (De
 2011)

