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.jpAbstra
t. The main 
ontribution of this paper is to show optimal algo-rithms 
omputing the sum and the pre�x-sums on two memory ma
hinemodels, the Dis
rete Memory Ma
hine (DMM) and the Uni�ed Mem-ory Ma
hine (UMM). The DMM and the UMM are theoreti
al parallel
omputing models that 
apture the essen
e of the shared memory andthe global memory of GPUs. These models have three parameters, thenumber p of threads, the width w of the memory, and the memory a

esslaten
y l. We �rst show that the sum of n numbers 
an be 
omputed inO( nw + nlp + l log n) time units on the DMM and the UMM. We then goon to show that 
( nw + nlp + l log n) time units are ne
essary to 
omputethe sum. Finally, we show an optimal parallel algorithm that 
omputesthe pre�x-sums of n numbers in O( nw + nlp + l log n) time units on theDMM and the UMM.Keywords: Memory ma
hine models, pre�x-sums 
omputation, parallel algo-rithm, GPU, CUDA1 Introdu
tionThe resear
h of parallel algorithms has a long history of more than 40 years. Se-quential algorithms have been developed mostly on the Random A

ess Ma
hine(RAM) [1℄. In 
ontrast, sin
e there are a variety of 
onne
tion methods and pat-terns between pro
essors and memories, many parallel 
omputing models havebeen presented and many parallel algorithmi
 te
hniques have been shown onthem. The most well-studied parallel 
omputing model is the Parallel RandomA

ess Ma
hine (PRAM) [5, 7, 19℄, whi
h 
onsists of pro
essors and a sharedmemory. Ea
h pro
essor on the PRAM 
an a

ess any address of the sharedmemory in a time unit. The PRAM is a good parallel 
omputing model in thesense that parallelism of ea
h problem 
an be revealed by the performan
e ofparallel algorithms on the PRAM. However, sin
e the PRAM requires a sharedmemory that 
an be a

essed by all pro
essors in the same time, it is not feasible.The GPU (Graphi
al Pro
essing Unit), is a spe
ialized 
ir
uit designed to a
-
elerate 
omputation for building and manipulating images [10, 11, 13, 20℄. LatestGPUs are designed for general purpose 
omputing and 
an perform 
omputation



2 Koji Nakanoin appli
ations traditionally handled by the CPU. Hen
e, GPUs have re
entlyattra
ted the attention of many appli
ation developers [10, 16℄. NVIDIA providesa parallel 
omputing ar
hite
ture 
alled CUDA (Compute Uni�ed Devi
e Ar
hi-te
ture) [18℄, the 
omputing engine for NVIDIA GPUs. CUDA gives developersa

ess to the virtual instru
tion set and memory of the parallel 
omputationalelements in NVIDIA GPUs. In many 
ases, GPUs are more eÆ
ient than multi-
ore pro
essors [14℄, sin
e they have hundreds of pro
essor 
ores and very highmemory bandwidth.CUDA uses two types of memories in the NVIDIA GPUs: the global memoryand the shared memory [18℄. The global memory is implemented as an o�-
hipDRAM, and has large 
apa
ity, say, 1.5-6 Gbytes, but its a

ess laten
y is verylong. The shared memory is an extremely fast on-
hip memory with lower 
apa
-ity, say, 16-64 Kbytes. The eÆ
ient usage of the global memory and the sharedmemory is a key for CUDA developers to a

elerate appli
ations using GPUs.In parti
ular, we need to 
onsider the 
oales
ing of the global memory a

essand the bank 
on
i
t of the shared memory a

ess [13, 14, 17℄. To maximize thebandwidth between the GPU and the DRAM 
hips, the 
onse
utive addresses ofthe global memory must be a

essed in the same time. Thus, threads of CUDAshould perform 
oales
ed a

ess when they a

ess to the global memory. The ad-dress spa
e of the shared memory is mapped into several physi
al memory banks.If two or more threads a

ess to the same memory banks in the same time, thea

ess requests are pro
essed sequentially. Hen
e to maximize the memory a

essperforman
e, threads should a

ess to distin
t memory banks to avoid the bank
on
i
ts of the memory a

ess.In our previous paper [15℄, we have introdu
ed two models, the Dis
rete Mem-ory Ma
hine (DMM) and the Uni�ed Memory Ma
hine (UMM), whi
h re
e
tthe essential features of the shared memory and the global memory of NVIDIAGPUs. The outline of the ar
hite
tures of the DMM and the UMM are illus-trated in Figure 1. In both ar
hite
tures, a sea of threads (Ts) is 
onne
ted tothe memory banks (MBs) through the memory management unit (MMU). Ea
hthread is a Random A

ess Ma
hine (RAM) [1℄, whi
h 
an exe
ute one of thefundamental operations in a time unit. We do not dis
uss the ar
hite
ture ofthe sea of threads in this paper, but we 
an imagine that it 
onsists of a set ofmulti-
ore pro
essors whi
h 
an exe
ute many threads in parallel and/or in time-sharing manner. Threads are exe
uted in SIMD [4℄ fashion, and the pro
essorsrun on the same program and work on the di�erent data.MBs 
onstitute a single address spa
e of the memory. A single address spa
eof the memory is mapped to the MBs in an interleaved way su
h that the wordof data of address i is stored in the (i mod w)-th bank, where w is the numberof MBs. The main di�eren
e of the two ar
hite
tures is the 
onne
tion of theaddress line between the MMU and the MBs, whi
h 
an transfer an addressvalue. In the DMM, the address lines 
onne
t the MBs and the MMU separately,while a single address line from the MMU is 
onne
ted to the MBs in the UMM.Hen
e, in the UMM, the same address value is broad
ast to every MB, and thesame address of the MBs 
an be a

essed in ea
h time unit. On the other hand,



Title Suppressed Due to Ex
essive Length 3di�erent addresses of the MBs 
an be a

essed in the DMM. Sin
e the memorya

ess of the UMM is more restri
ted than that of the DMM, the UMM is lesspowerful than the DMM.

DMM UMMMMUMB MB MB MB MMUMB MB MB MB
T T T T T TT T T T T TT T T T T TT T T T T TT T T T T TT T T T T TT T T T T TT T T T T Ta sea of threads a sea of threads

data lineaddress lineFig. 1. The ar
hite
tures of the DMM and the UMMThe performan
e of algorithms of the PRAM is usually evaluated using twoparameters: the size n of the input and the number p of pro
essors. For example,it is well known that the sum of n numbers 
an be 
omputed in O(np + logn)time on the PRAM [5℄. We will use four parameters, the size n of the input,the number p of threads, the width w and the laten
y l of the memory whenwe evaluate the performan
e of algorithms on the DMM and on the UMM. Thewidth w is the number of memory banks and the laten
y l is the number of timeunits to 
omplete the memory a

ess. Hen
e, the performan
e of algorithms onthe DMM and the UMM is evaluated as a fun
tion of n (the size of a problem),p (the number of threads), w (the width of a memory), and l (the laten
y of amemory). In NVIDIA GPUs, the width w of global and shared memory is 16or 32. Also, the laten
y l of the global memory is several hundreds 
lo
k 
y
les.In CUDA, a grid 
an have at most 65535 blo
ks with at most 1024 threadsea
h [18℄. Thus, the number p of threads 
an be 65 million.Suppose that an array a of n numbers is given. The pre�x-sums of a is thearray of size n su
h that the i-th (0 � i � n � 1) element is a[0℄ + a[1℄ + � � �+a[i℄. Clearly, a sequential algorithm 
an 
ompute the pre�x sums by exe
utinga[i+1℄ a[i+1℄+ a[i℄ for all i (0 � i � n� 1). The 
omputation of the pre�x-sums of an array is one of the most important algorithmi
 pro
edures. Manyalgorithms su
h as graph algorithms, geometri
 algorithms, image pro
essing andmatrix 
omputation 
all pre�x-sums algorithms as a subroutine. In parti
ular,many parallel algorithms uses a parallel pre�x-sums algorithm. For example,



4 Koji Nakanothe pre�x-sums 
omputation is used to obtain the pre-order, the in-order, andthe post-order of a rooted binary tree in parallel [5℄. So, it is very important todevelop eÆ
ient parallel algorithms for the pre�x-sums.The main 
ontribution of this paper is to show an optimal pre�x-sums algo-rithm on the DMM and the UMM. We �rst show that the sum of n numbers 
anbe 
omputed in O( nw + nlp + l logn) time units using p threads on the DMM andthe UMM with width w and laten
y l. We then go on to dis
uss the lower boundof the time 
omplexity and show three lower bounds, 
( nw )-time bandwidth lim-itation, 
(nlp )-time laten
y limitation, and 
(l logn)-time redu
tion limitation.From this dis
ussion, the 
omputation of the sum and the pre�x-sums takes atleast 
( nw + nlp + l logn) time units on the DMM and the UMM. Thus, the sumalgorithm is optimal. For the 
omputation of the pre�x-sums, we �rst evaluatethe 
omputing time of a well-known naive algorithm [8, 19℄. We show that a naivepre�x-sums algorithm runs in O(n lognw + nl lognp + l logn) time. Hen
e, this naivepre�x-sums algorithm is not optimal and it has an overhead of fa
tor logn bothfor the bandwidth limitation nw and for the laten
y limitation nlp . Finally, weshow an optimal parallel algorithm that 
omputes the pre�x-sums of n numbersin O( nw + nlp + l logn) time units on the DMM and the UMM. However, thisalgorithm uses work spa
e of size n and it may not be a

eptable if the size n ofthe input is very large. We also show that the pre�x-sums 
an also be 
omputedin the same time units, even if work spa
e 
an store only min(p log p; wl log(wl))numbers.Several te
hniques for 
omputing the pre�x-sums on GPUs have been shownin [8℄. They have presented a 
ompli
ated data routing te
hnique to avoid thebank 
on
i
t in the 
omputation of the pre�x-sums. However, their algorithmperforms memory a

ess to distant lo
ations in parallel and it performs non-
oales
ed memory a

ess. Hen
e it is not eÆ
ient for the UMM, that is, theglobal memory of GPUs. In [9℄ a work-eÆ
ient parallel algorithm for pre�x-sums on the GPU has been presented. However, the algorithm uses work spa
eof n logn, and also the performan
e of the algorithm has not been evaluated.This paper is organized as follows. Se
tion 2 reviews the Dis
rete MemoryMa
hine (DMM) and the Uni�ed Memory Ma
hine (UMM) introdu
ed in ourprevious paper [15℄. In Se
tion 3, we evaluate the 
omputing time of the 
ontigu-ous memory a

ess to the memory of the DMM and the UMM. The 
ontiguousmemory a

ess is a key ingredient of parallel algorithm development on theDMM and the UMM. Using the 
ontiguous a

ess, we show that the sum of nnumbers 
an be 
omputed in O( nw + nlp + l logn) time units in Se
tion 4. We thengo on to dis
uss the lower bound of the time 
omplexity and show three lowerbounds, 
( nw )-time bandwidth limitation, 
(nlp )-time laten
y limitation, and
(l logn)-time redu
tion limitation in Se
tion 5. Se
tion 6 shows a naive pre�x-sums algorithm, whi
h runs in O(n lognw + nl lognp + l logn) time units. Finally, weshow an optimal parallel pre�x-sums algorithm running in O( nw + nlp + l logn)time units. Se
tion 8 o�ers 
on
lusion of this paper.



Title Suppressed Due to Ex
essive Length 52 Parallel Memory Ma
hines: DMM and UMMThe main purpose of this se
tion is to review the Dis
rete Memory Ma
hine(DMM) and the Uni�ed Memory Ma
hine (UMM). introdu
ed in our previouspaper [15℄.We �rst de�ne the Dis
rete Memory Ma
hine (DMM) of width w and laten
yl. Let m[i℄ (i � 0) denote a memory 
ell of address i in the memory. Let B[j℄ =fm[j℄;m[j + w℄;m[j + 2w℄;m[j + 3w℄; : : :g (0 � j � w � 1) denote the j-thbank of the memory. Clearly, a memory 
ell m[i℄ is in the (i mod w)-th memorybank. We assume that memory 
ells in di�erent banks 
an be a

essed in a timeunit, but no two memory 
ells in the same bank 
an be a

essed in a time unit.Also, we assume that l time units are ne
essary to 
omplete an a

ess requestand 
ontinuous requests are pro
essed in a pipeline fashion through the MMU.Thus, it takes k + l� 1 time units to 
omplete k a

ess requests to a parti
ularbank. 0 1 2 34 5 6 78 9 10 1112 13 14 15
0 1 2 34 5 6 78 9 10 1112 13 14 15memory banks of DMM

A[0℄A[1℄A[2℄A[3℄
B[0℄ B[1℄ B[2℄ B[3℄

address groups of UMMFig. 2. Banks and address groups for w = 4We assume that p threads are partitioned into pw groups of w threads 
alledwarps. More spe
i�
ally, p threads are partitioned into pw warps W (0);W (1),: : :, W ( pw � 1) su
h that W (i) = fT (i � w);T (i � w + 1); : : : ;T ((i + 1) � w � 1)g(0 � i � pw � 1). Warps are dispat
hed for memory a

ess in turn, and wthreads in a warp try to a

ess the memory in the same time. In other words,W (0);W (1); : : : ;W (w � 1) are dispat
hed in a round-robin manner if at leastone thread in a warp requests memory a

ess. If no thread in a warp needsmemory a

ess, su
h warp is not dispat
hed for memory a

ess. When W (i)is dispat
hed, w thread in W (i) sends memory a

ess requests, one request perthread, to the memory. We also assume that a thread 
annot send a new memorya

ess request until the previous memory a

ess request is 
ompleted. Hen
e, ifa thread send a memory a

ess request, it must wait l time units to send a newmemory a

ess request.



6 Koji NakanoFor the reader's bene�t, let us evaluate the time for memory a

ess usingFigure 3 on the DMM for p = 8, w = 4, and l = 3. In the �gure, p = 8threads are partitioned into pw = 2 warps W (0) = fT (0); T (1); T (2); T (3)gand W (1) = fT (4);T (5);T (6);T (7)g. As illustrated in the �gure, 4 threadsin W (0) try to a

ess m[0℄;m[1℄;m[6℄, and m[10℄, and those in W (1) try to a
-
ess m[8℄;m[9℄;m[14℄, and m[15℄. The time for the memory a

ess are evaluatedunder the assumption that memory a

ess are pro
essed by imaginary l pipelinestages with w registers ea
h as illustrated in the �gure. Ea
h pipeline registerin the �rst stage re
eives memory a

ess request from threads in an dispat
hedwarp. Ea
h i-th (0 � i � w � 1) pipeline register re
eives the request to thei-th memory bank. In ea
h time unit, a memory request in a pipeline register ismoved to the next one. We assume that the memory a

ess 
ompletes when therequest rea
hes the last pipeline register.Note that, the ar
hite
ture of pipeline registers illustrated in Figure 3 areimaginary, and it is used only for evaluating the 
omputing time. The a
tual ar-
hite
ture should involves a multistage inter
onne
tion network [6, 12℄ or sortingnetwork [2, 3℄, to route memory a

ess requests.Let us evaluate the time for memory a

ess on the DMM. First, a

ess requestfor m[0℄;m[1℄;m[6℄ are sent to the �rst stage. Sin
e m[6℄ and m[10℄ are in thesame bank B[2℄, their memory requests 
annot be sent to the �rst stage in thesame time. Next, the m[10℄ is sent to the �rst stage. After that, memory a

essrequests for m[8℄;m[9℄;m[14℄;m[15℄ are sent in the same time, be
ause they arein di�erent memory banks. Finally, after l � 1 = 2 time units, these memoryrequests are pro
essed. Hen
e, the DMM takes 5 time units to 
omplete thememory a

ess.We next de�ne the Uni�ed Memory Ma
hine (UMM)) of width w as follows.Let A[j℄ = fm[j �w℄;m[j �w+1℄; : : : ;m[(j +1) �w� 1℄g denote the j-th addressgroup. We assume that memory 
ells in the same address group are pro
essedin the same time. However, if they are in the di�erent groups, one time unitis ne
essary for ea
h of the groups. Also, similarly to the DMM, p threads arepartitioned into warps and ea
h warp a

ess to the memory in turn.Again, let us evaluate the time for memory a

ess using Figure 3 on theUMM for p = 8, w = 4, and l = 3. The memory a

ess requests by W (0) are inthree address groups. Thus, three time units are ne
essary to send them to the�rst stage. Next, two time units are ne
essary to send memory a

ess requestsby W (1), be
ause they are in two address groups. After that, it takes l � 1 = 2time units to pro
ess the memory a

ess requests. Hen
e, totally 3 + 2 + 2 = 7time units are ne
essary to 
omplete all memory a

ess.3 Contiguous Memory A

essThe main purpose of this se
tion is to review the 
ontiguous memory a

ess onthe DMM and the UMM shown in [15℄. Suppose that an array a of size n (� p)is given. We use p threads to a

ess to all of n memory 
ells in a su
h that ea
hthread a

esses to np memory 
ells. Note that \a

essing to" 
an be \reading
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Fig. 3. An example of memory a

ess



8 Koji Nakanofrom" or \writing in." Let a[i℄ (0 � i � n� 1)denote the i-th memory 
ells in a.When n � p, the 
ontiguous a

ess 
an be performed as follows:[Contiguous memory a

ess℄for t 0 to np � 1 dofor i 0 to p� 1 do in parallelT (i) a

ess to a[p � t+ i℄We will evaluate the 
omputing time. For ea
h t (0 � t � np � 1), p threadsa

ess to p memory 
ells a[pt℄; a[pt+ 1℄; : : : ; a[p(t+1)� 1℄. This memory a

essis performed by pw warps in turn. More spe
i�
ally, �rst, w threads in W (0)a

ess to a[pt℄; a[pt+1℄; : : : ; a[pt+w�1℄. After that, p threads in W (1) a

ess toa[pt+w℄; a[pt+w+1℄; : : : ; a[pt+2w� 1℄, and the same operation is repeatedlyperformed. In general, p threads in W (j) (0 � j � pw � 1) a

esses to a[pt +jw℄; a[pt + jw + 1℄; : : : ; a[pt+ (j + 1)w � 1℄. Sin
e w memory 
ells are a

essedby a warp are in the di�erent bank, the a

ess 
an be 
ompleted in l time unitson the DMM. Also, these w memory 
ells are in the same address group, andthus, the a

ess 
an be 
ompleted in l time units on the UMM.Re
all that the memory a

ess are pro
essed in pipeline fashion su
h that wthreads in ea
h W (j) send w memory a

ess requests in one time unit. Hen
e, pthreads pw warps send p memory a

ess requests in pw time units. After that, thelast memory a

ess requests byW ( pw�1) are 
ompleted in l�1 time units. Thus,p threads a

ess to p memory 
ells a[pt℄; a[pt+1℄; : : : ; a[p(t+1)� 1℄ in pw + l� 1time units. Sin
e this memory a

ess is repeated np times, the 
ontiguous a

ess
an be done in np � ( pw + l� 1) = O( nw + nlp ) time units.If n < p then, the 
ontiguous memory a

ess 
an be simply done using nthreads out of the p threads. If this is the 
ase, the memory a

ess 
an be doneby O( nw + l) time units. Therefore, we have,Lemma 1. The 
ontiguous a

ess to an array of size n 
an be done in O( nw +nlp +l) time using p threads on the UMM and the DMM with width w and laten
yl.4 An optimal parallel algorithm for 
omputing the sumThe main purpose of this se
tion is to show an optimal parallel algorithm for
omputing the sum on the memory ma
hine models.Let a be an array of n = 2m numbers. Let us show an algorithm to 
omputethe sum a[0℄+a[1℄+ � � �+a[n�1℄. The algorithm uses a well-known parallel 
om-puting te
hnique whi
h repeatedly 
omputes the sums of pairs. We implementthis te
hnique to perform 
ontiguous memory a

ess. The details are spelled outas follows:[Optimal algorithm for 
omputing the sum℄for t m� 1 down to 0 dofor i 0 to 2t � 1 do in parallela[i℄ a[i℄ + a[i+ 2t℄



Title Suppressed Due to Ex
essive Length 9Figure 4 illustrates how the sums of pairs are 
omputed. From the �gure, thereader should have no diÆ
ulty to 
on�rm that this algorithm 
ompute the sum
orre
tly.

Fig. 4. Illustrating the summing algorithm for n numbersWe assume that p threads to 
ompute the sum. For ea
h t (0 � t � m� 1),2t operations \a[i℄ a[i℄+a[i+2t℄" are performed. These operation involve thefollowing memory a

ess operations:{ reading from a[0℄; a[1℄; : : : ; a[2t � 1℄,{ reading from a[2t℄; a[2t + 1℄; : : : ; a[2 � 2t � 1℄, and{ writing in a[0℄; a[1℄; : : : ; a[2t � 1℄,Sin
e these memory a

ess operations are 
ontiguous, they 
an be done in O( 2tw +2tlp + l) time using p threads both on the DMM and on the UMM with width wand laten
y l from Lemma 1. Thus, the total 
omputing time ism�1Xt=0 O(2tw + 2tlp + l) = O(2mw + 2mlp + lm)= O( nw + nlp + l logn)and we have,Lemma 2. The sum of n numbers 
an be 
omputed in O( nw + nlp + l logn) timeunits using p threads on the DMM and on the UMM with width w and laten
y l.5 The lower bound of the 
omputing time and thelaten
y hidingLet us dis
uss the lower bound of the time ne
essary to 
ompute the sum on theDMM and the UMM to show that our parallel summing algorithm for Lemma 2



10 Koji Nakanois optimal. We will show three lower bounds, 
( nw )-time bandwidth limitation,
(nlp )-time laten
y limitation, and 
(l logn)-time redu
tion limitation.Sin
e the width of the memory is w, at most w numbers in the memory 
anbe read in a time unit. Clearly, all of the n numbers must be read to 
omputethe sum. Hen
e, 
( nw ) time units are ne
essary to 
ompute the sum. We 
all the
( nw )-time lower bound the bandwidth limitation.Sin
e the memory a

ess takes laten
y l, a thread 
an send at most tl memoryread requests in t time units. Thus, p threads 
an send at most ptl total memoryrequests in t time units. Sin
e at least n numbers in the memory must be readto 
ompute the sum, ptl � n must be satis�ed. Thus, at least t = 
(nlp ) timeunits are ne
essary. We 
all the 
(nlp )-time lower bound the laten
y limitation.Ea
h thread 
an perform a binary operation su
h as addition in a time unit.If at least one of the two operands of a binary operation is stored in the sharedmemory, it takes at least l time units to obtain the resulting value. Clearly,addition operation must be performed n � 1 times to 
ompute the sum of nnumbers. The 
omputation of the sum using addition is represented using abinary tree with n leaves and n� 1 internal nodes. The root of the binary tree
orresponds to the sum. From basi
 graph theory results, there exists a pathfrom the root to a leaf, whi
h has at least logn internal nodes. The addition
orresponds to ea
h internal node takes l time units. Thus, it takes at least
(l logn) time to 
ompute the sum, regardless of the number p of threads. We
all the 
(l logn)-time lower bound the redu
tion limitation.From the dis
ussion above, we have,Theorem 1. Both the DMM and the UMM with p threads, width w, and laten
yl takes at least 
( nw + nlp + l logn) time units to 
ompute the sum of n numbers.From Theorem 1, the parallel algorithm for 
ommuting the sum shown forLemma 2 is optimal.Let us dis
uss about three limitations. From a pra
ti
al point of view, width wand laten
y l are 
onstant values that 
annot be 
hanged by parallel 
omputerusers. These values are �xed when a parallel 
omputer based on the memoryma
hine models is manufa
tured. Also, the size n of the input are variable.Programmers 
an adjust the number p of threads to obtain the best performan
e.Thus, the value of the laten
y limitation nlp 
an be 
hanged by programmers.Let us 
ompare the values of three limitations.wl � p: From nw � nlp , the bandwidth limitation dominates the laten
y limita-tion.wl � nlogn : From nw � l logn, the bandwidth limitation dominates the redu
-tion limitation.p � nlogn : From nlp � l logn, the laten
y limitation dominates the redu
tionlimitation.Thus, if both wl � p and wl � nlogn are satis�ed, the 
omputing time is of thesum algorithm for Lemma 2 is O( nw ). Note that the memory ma
hine modelshave wl imaginary registers. Sin
e more than one memory requests by a thread
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essive Length 11
an not be stored in imaginary pipeline registers, wl � p must be satis�ed to �llall the pipeline registers with memory a

ess requests by p threads. Sin
e thesum algorithm has logn stages and expe
ted nlog n memory a

ess requests aresent to the imaginary pipeline registers, wl � nlogn must also be satis�ed to �llall the pipeline registers with nlog n memory a

ess requests. From the dis
ussionabove, to hide the laten
y, the number p of threads must be at least the numberwl of pipeline registers and the size n of input must be at least wl log(wl).6 A naive pre�x-sums algorithmWe assume that an array a with n = 2m numbers is given. Let us start witha well-known naive pre�x-sums algorithm for array a [8, 9℄, and show it is notoptimal. The naive pre�x-sums algorithm is written as follows:[A naive pre�x-sums algorithm℄for t 0 to p� 1 dofor i 2t to n� 1 do in parallela[i℄ a[i℄ + a[i� 2t℄Figure 5 illustrates how the pre�x-sums are 
omputed.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1010-1111-1212-1313-1414-150 0-1 0-2 0-3 1-4 2-5 3-6 4-7 5-8 6-9 7-10 8-11 9-1210-1311-1412-150 0-1 0-2 0-3 0-4 0-5 0-6 0-7 1-8 2-9 3-10 4-11 5-12 6-13 7-14 8-150 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 0-15Fig. 5. Illustrating the naive pre�x-sums algorithm for n numbersWe assume that p threads are available and evaluate the 
omputing time ofthe naive pre�x-sums algorithm. The following three memory a

ess operationsare performed for ea
h t (0 � t � p� 1): 
an be done by{ reading from a[2t℄; a[2t + 1℄; : : : ; a[n� 2℄,{ reading from a[2t + 1℄; a[2t + 2℄; : : : ; a[n� 1℄, and{ writing in a[2t + 1℄; a[2t + 2℄; : : : ; a[n� 1℄.
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h of the three operations 
an be done by 
ontiguous memory a

ess for n�2tmemory 
ells. Hen
e, the 
omputing time of ea
h t is O(n�2tw + (n�2t)lp + l) fromLemma 1. The total 
omputing time is:p�1Xt=0 O(n� 2tw + (n� 2t)lp + l) = O(n lognw + nl lognp );Thus, we have,Lemma 3. The naive pre�x-sums algorithm runs in O(n lognw + nl lognp ) timeunits using p threads on the DMM and on the UMM with width w and laten
y l.Clearly, from Theorem 1, the naive algorithm is not optimal.7 Our optimal pre�x-sums algorithmThis se
tion shows an optimal pre�x-sums algorithm running in O(n lognw + nlp +l logn) time units. We use m� 1 arrays a1; a2; : : : am�1 as work spa
e. Ea
h at(1 � t � m � 1) 
an store 2t � 1 numbers. Thus, the total size of the m � 1arrays is no more than (21� 1)+ (22� 1)+ � � �+(2m�1� 1) = 2m�m < n. Weassume that the input of n numbers are stored in array am of size n.The algorithm has two stages. In the �rst stage, interval sums are stored inthe m � 1 arrays. The se
ond stage uses interval sums in the m � 1 arrays to
ompute the resulting pre�x-sums. The details of the �rst stage is spelled out asfollows.[Compute the interval sums℄for t m� 1 down to 1 dofor i 0 to 2t � 1 do in parallelat[i℄ at+1[2 � i℄ + at+1[2 � i+ 1℄Figure 6 illustrated how the interval sums are 
omputed. When this programterminates, ea
h at[i℄ (1 � t � m� 1; 0 � i � 2t� 2) stores at[i � n2t ℄ + at[i � n2t +1℄ + � � �+ at[(i+ 1) � n2t � 1℄.In the se
ond stage, the pre�x-sums are 
omputed by 
omputing the sumsof the interval sums as follows:[Compute the sums of the interval sums℄for t 1 to m� 1 dofor i 0 to 2t � 2 do in parallelbeginat+1[2 � i+ 1℄ at[i℄at+1[2 � i+ 2℄ at+1[2 � i+ 2℄ + at[i℄endam[n� 1℄ am[n� 2℄ + am[n� 1℄



Title Suppressed Due to Ex
essive Length 130 1 2 3 4 5 6 7 8 9 10 11 12 13 14 150-1 2-3 4-5 6-7 8-9 10-11 12-130-3 4-7 8-110-7
a4a3a2a1 Fig. 6. Illustrating the 
omputation of interval sums in m� 1 arrays.0 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9 0-10 0-11 0-12 0-13 0-14 150-1 0-3 0-5 0-7 0-9 0-11 0-130-3 0-7 0-110-7
a4a3a2a1 
opy addFig. 7. Illustrating the 
omputation of interval sums in m� 1 arrays.Figure 7 shows how the pre�x-sums are 
omputed. In the �gure, \at+1[2�i+1℄ at[i℄" and \at+1[2 �i+2℄ at+1[2 �i+2℄+at[i℄" 
orrespond to \
opy" and \add",respe
tively.When this algorithm terminates, ea
h ap[i℄ (0 � i � 2t�) stores the pre�xsum ap[0℄ + ap[1℄ + � � � + ap[i℄. We assume that p threads are available andevaluate the 
omputing time. The �rst stage involves the following memorya

ess operations for ea
h t (1 � t � m� 1):{ reading from at+1[0℄; at+1[2℄; : : : ; at+1[2t � 2℄,{ reading from at+1[1℄; at+1[3℄; : : : ; at+1[2t � 1℄, and{ writing in at[0℄; at[1℄; : : : ; at[2t � 1℄.Sin
e every two addresses is a

essed, these four memory a

ess operations areessentially 
ontiguous a

ess and they 
an be done in O( 2tw + 2tlp + l) time units.Therefore, the total 
omputing time of the �rst stage isp�1Xt=1 O(2tw + 2tlp + l) = O( nw + nlp + l logn):The se
ond stage 
onsists of the following memory a

ess operations for ea
h t(1 � t � m� 1):{ reading from at[0℄; at[1℄; : : : ; at[2t � 2℄,



14 Koji Nakano{ reading from at+1[2℄; at+1[4℄; : : : ; at+1[2t+1 � 2℄,{ writing in at+1[1℄; at+1[3℄; : : : ; at+1[2t+1 � 3℄, and{ writing in at+1[2℄; at+1[4℄; : : : ; at+1[2t+1 � 2℄.Similarly, these operations 
an be done in O( 2tw + 2tlp + l) time units. Hen
e, thetotal 
omputing time of the se
ond stage is also O( nw + nlp + l logn). Thus, wehave,Theorem 2. The pre�x-sums of n numbers 
an be 
omputed in O( nw + nlp +l logn) time units using p threads on the DMM and on the UMM with width wand laten
y l if work spa
e of size n is available.From Theorem 1, the lower bound of the 
omputing time of the pre�x-sums is
( nw + nlp + l logn).Suppose that n is very large and work spa
e of size n is not available. We willshow that, if work spa
e no smaller than min(p log p; wl log(wl)) is available, thepre�x-sums 
an also be 
omputed in O( nw + nlp + l logn). Let k be an arbitrarynumber su
h that p � k � n. We partition the input a with n numbers intonk groups with k (� p) numbers ea
h. Ea
h t-th group (0 � t � nk � 1) has knumbers a[tk℄; a[tk + 1℄; : : : ; a[(t + 1)k � 1℄. The pre�x-sums of every group is
omputed using p threads in turn as follows.[Sequential-parallel pre�x-sums algorithm℄for t 0 to nk � 1 dobeginif(t > 0) a[tk℄ a[tk℄ + a[tk � 1℄Compute the pre�x-sums of k numbers a[tk℄; a[tk + 1℄; : : : ; a[(t+ 1)k � 1℄endIt should be 
lear that this algorithm 
omputes the pre�x-sums 
orre
tly. Thepre�x-sums of k numbers 
an be 
omputed in O( kw + klp + l log k). The 
om-putation of the pre�x-sums is repeated nk times, the total 
omputing time isO( kw + klp + l log k) � nk = O( nw + nlp + nl log kk ). Thus, we have,Corollary 1. The pre�x-sums of n numbers 
an be 
omputed in O( nw + nlp +nl log kk ) time units using p threads on the DMM and on the UMM with width wand laten
y l if work spa
e of size k is available.If k � p log p then, nl log kk � nl log(p log p)p log p < nlp . If k � wl log(wl) then nl log kk �nl log(wl log(wl))wl log(wl) < nw . Thus, if k � min(p log p; wl log(wl)) then the 
omputingtime is O( nw + nlp ).8 Con
lusionThe main 
ontribution of this paper is to show that an optimal parallel pre�x-sums algorithm that runs in O( nw + nlp + l logn) time units. This algorithm useswork spa
e of size min(n; p log p; wl log(wl)).
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