
The Super Warp Architecture with Random Address Shift

Koji Nakano
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Susumu Matsumae
Department of Information Science

Saga University
Honjo 1, Saga, 840-8502 Japan

Abstract—The Discrete Memory Machine (DMM) is a the-
oretical parallel computing model that captures the essence
of memory access by a streaming multiprocessor on CUDA-
enabled GPUs. The DMM has � memory banks that constitute
a shared memory, and each warp of � threads access the
shared memory at the same time. However, memory access
requests destined for the same memory bank are processed
sequentially. Hence, it is very important for developing effi-
cient algorithms to reduce the memory access congestion, the
maximum number of memory access requests destined for the
same bank. However, it is not easy to minimize the memory
access congestion for some problems. The main contribution of
this paper is to present novel and practical parallel computing
models in which the congestion is small for any memory access
requests. We first present the Super Discrete Memory Machine
(SDMM), an extended version of the DMM, which supports a
super warp with multiple warps. Memory access requests by
multiple warps in a super warp are packed through pipeline
registers to reduce the memory access congestion. We then go
on to apply the random address shift technique to the SDMM.
The resulting machine, the Random Super Discrete Memory
Machine (RSDMM) can equalize memory access requests by
a super warp. Quite surprisingly, for any memory access
requests by a super warp on the RSDMM, the overhead of
the memory access congestion is within a constant factor of
perfectly scheduled memory access. Thus, unlike the DMM,
developers of parallel algorithms do not have to consider the
memory access congestion on the RSDMM. The congestion on
the RSDMM is evaluated by theoretical analysis as well as by
experiments.

Keywords-GPU, CUDA, memory bank conflicts, memory
access congestion, randomized technique

I. INTRODUCTION

A. Background

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [1], [2], [3], [4]. Latest GPUs are
designed for general purpose computing and can perform
computation in applications traditionally handled by the
CPU. Hence, GPUs have recently attracted the attention of
many application developers [1], [5], [6]. NVIDIA provides
a parallel computing architecture called CUDA (Compute
Unified Device Architecture) [7], the computing engine for
NVIDIA GPUs. CUDA gives developers access to the virtual
instruction set and memory of the parallel computational
elements in NVIDIA GPUs. In many cases, GPUs are

more efficient than multicore processors [2], since they
have hundreds of processor cores and very high memory
bandwidth.

NVIDIA GPUs has streaming multiprocessors (SMs) each
of which executes multiple threads in parallel. CUDA uses
two types of memories in the NVIDIA GPUs: the shared
memory and the global memory [7]. Each SM has the shared
memory, an extremely fast on-chip memory with lower ca-
pacity, say, 16-48 Kbytes, and low latency. Every SM shares
the global memory implemented as an off-chip DRAM with
large capacity, say, 1.5-6 Gbytes, but its access latency
is very large. The efficient usage of the shared memory
and the global memory is a key for CUDA developers to
accelerate applications using GPUs. In particular, we need
to consider bank conflicts of the shared memory accesses
and coalescing of the global memory accesses [8]. The
address space of the shared memory is mapped into several
physical memory banks. If two or more threads access the
same memory bank at the same time, the access requests
are processed in turn. Hence, to maximize the memory
access performance, threads in a warp should access distinct
memory banks to avoid bank conflicts of the shared memory
accesses. To maximize the bandwidth between the GPU and
the DRAM chips, the consecutive addresses of the global
memory must be accessed at the same time. Thus, CUDA
threads should perform coalesced access when they access
the global memory.

The most well-studied parallel computing model is the
Parallel Random Access Machine (PRAM) [9], [10], which
consists of processors and a shared memory. Each processor
on the PRAM can access any address of the shared memory
in a time unit. The PRAM is a good parallel computing
model in the sense that parallelism of each problem can
be revealed by the performance of parallel algorithms on
the PRAM. Although GPUs have the shared memory and
the global memory accessed by multiple threads, parallel
algorithms developed for the PRAM may not achieve good
performance on GPUs. We should consider the memory
access characteristics such as bank conflicts and coalescing
when we develop efficient parallel algorithms for GPUs.

B. Memory Machine Models for GPUs

The Discrete Memory Machine (DMM) [11], [12], the

dispatch

� threads � threads Memory Management Unit (MMU) � memory banks

(A) Discrete Memory Machine (DMM)

Request Packing Unit (RPU)

(B) Super Discrete Memory Machine (SDMM)

(C) Random Super Discrete Memory Machine (RSDMM)

Random Shift Unit (RSU)

dispatch

dispatch

Figure 1. The DMM, the SDMM, and the RSDMM for � � �

Unified Memory Machine (UMM) [13], [14], [15], and the
Hierarchical Memory Machine [16], [17], [18] are theoreti-
cal parallel computing models of CUDA-enabled GPUs. The
DMM reflects parallel computing by multiple cores in a
single streaming multiprocessor with the shared memory.
The UMM corresponds to parallel computing using the
global memory of CUDA-enabled GPUs. The HMM cap-
tures the hierarchical architecture of CUDA-enabled GPUs
using multiple streaming processors with multiple cores. In
this paper, we focus on the DMM.

Figure 1 (A) illustrates the basic structure of the Discrete
Memory Machine (DMM). The DMM has � threads, each
of which is a Random Access Machine (RAM) [19], which
can execute fundamental operations in a time unit. It also has
� memory banks that constitute a single address space. We
assume that address � is mapped to bank � ��� �. Threads
are executed in SIMD [20] fashion, and run on the same
program and work on the different data. The � threads are
partitioned into �

� groups of � threads each called a warp.
For simplicity, we assume that � is a multiple of �. On
the DMM, �

� warps are dispatched for memory access in
turn, and � threads in a dispatched warp send memory
access requests. The � memory access requests sent by a
dispatched warp are sent to the � memory banks through
the Memory Management Unit (MMU). We do not discuss
the architecture of the MMU, but we assume that it moves
memory access requests to destination memory banks in a
pipeline fashion. The memory access requests destined for
the same memory bank are processed sequentially. Also, we
assume that memory access takes latency �. Intuitively, it

takes � time units for a memory access request to move from
a thread to the memory banks through the MMU. Note that
the DMM has three parameters: width � (i.e. the number of
memory banks and the number of threads in a warp), latency
�, and the number � of threads.

It is very important for developing efficient algorithms
on the DMM to reduce the memory access congestion, the
maximum number of memory access requests destined for
the same bank. However, it is not easy and sometimes
impossible to minimize the memory access congestion for
some problems. In our previous paper [11], we have devel-
oped a graph coloring technique to minimize the memory
access congestion for off-line permutation. Later, we have
implemented this offline permutation algorithm on GeForce
GTX-680 GPU [12]. The experimental results showed that
the offline permutation algorithm developed for the DMM
runs on the GPU much faster than the conventional offline
permutation algorithm. This fact implies that, the DMM is a
good theoretical model for GPU computing using a stream-
ing multiprocessor, and it is very important to minimize
the memory access congestion when we implement parallel
algorithms on the GPU.

C. Our Contribution

The main contribution of this paper is to present novel and
practical parallel computing models, in which the memory
access congestion can be reduced.

We first present the Super Discrete Memory Machine
(SDMM), an extended version of the DMM, which supports
a super warp with multiple warps. Memory access requests

by a super warp are packed through the Request Packing
Unit (RPU) to reduce the memory access congestion. Fig-
ure 1 (B) illustrates the basic structure of the SDMM. Let �
be the number of warps in each super warp. Memory access
requests sent by �� threads in a super warp are packed
such that they are sent to the memory banks continuously.
Since memory access requests by multiple warps are packed
on the SDMM, we can expect to average memory access
requests for memory banks and to reduce the memory access
congestion.

We then go on to apply the random address shift technique
presented in [21]. Usually, a single address space is mapped
to the � memory banks such that each address � � � � �
(� � �� � � � � �� �) is arranged in the �-th memory cell
of memory bank �. The idea of the random address shift
is to arrange each address � � � � � to the �-th memory
cell of memory bank �� � 	�� ��� �, where 	�� 	��

are independent random numbers in 	�� � � �
. In other
words, each address � � � � � is arranged to address
� � � � �� � 	�� ��� �. We apply this technique to the
SDMM, and obtain the Random Super Discrete Memory
Machine (RSDMM). Figure 1 (C) illustrates the basic struc-
ture of the RSDMM. The Random Shift Unit (RSU) is used
to route address � ���� to address � ������ 	�� ��� �.
On the SDMM, all �� memory requests by a super warp
are destined for the same memory bank in the worst case,
while � memory requests are destined for the same bank
if they are equally sent to � banks. On the other hand, on
the RSDMM, we can guarantee that expected �� ��� � ������� ���� �
memory requests are destined for the same bank for all cases
if � � ����.

Quite surprisingly, if a super warp on the RSDMM
has �
 ���� warps, expected ������� memory access
requests are destined for the same bank. Since the perfectly
scheduled memory access on the SDMM must have ����
memory access requests to the same bank, the overhead
of the memory access congestion of the RSDMM for any
memory access is within a constant factor of that of the
SDMM for perfectly scheduled memory access. In this
paper, the congestion on the RSDMM is evaluated by theo-
retical analysis as well as by experiments. We can say that,
unlike the DMM or the SDMM, developers do not have to
consider the memory access congestion on the RSDMM for
optimizing parallel algorithms. They can assume a uniformly
accessible shared memory when they implement parallel
algorithm in the RSDMM. Our results on the RSDMM
suggest a new architecture of streaming multiprocessor for
next generation GPUs.

To clarify the difference of the DMM, the SDMM, and
the RSDMM in terms of computational power, we evaluate
the time for transposing a matrix of size

�
� ��

�, where�
� is a multiple of �. We use two algorithms: the Naive

Transpose Algorithm and the Diagonal Transpose Algo-
rithm. The Naive Transpose Algorithm follows the definition

of the transpose as it is. Every thread is assigned to the
matrix in row major order, and copies elements along the
definition of the transpose. Figure 2 illustrates how the
matrix is transposed by the Naive Transpose Algorithm. The
congestion of this algorithm is very large on the DMM.
The memory write requests by a warp are always destined
for the same bank, and the transposing takes a lot of time.
Actually, on the DMM with width � and latency �, the Naive
Transpose Algorithm runs in ���� ��

� � time units using �
threads. Since the running time has a factor ����, the Naive
Transpose Algorithm on the DMM has no contribution of
parallel computation for transposing a matrix.

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

� �
� ���

� ���

� ���

� ���

Figure 2. Illustrating the Naive Transpose Algorithm

The Diagonal Transpose Algorithm is designed to min-
imize the memory access congestion on the DMM. Every
thread is assigned to the matrix in a diagonal order. Figure 3
illustrates how the matrix is transposed by the Diagonal
Transpose Algorithm. The memory write requests by a warp
are always destined for distinct banks. Thus, the transposing
can be done much faster. On the DMM with width �
and latency �, the Diagonal Transpose Algorithm runs in
�� �� � ��

� � time units using � threads. This computing time
matches the sum of two lower bounds [15]: the bandwidth
lower bound �� �� � and the latency lower bound �� ��� �.
Hence, the Diagonal Transpose Algorithm on the DMM is
optimal.

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

� �

� ���

� ���

� ���

� ���

Figure 3. Illustrating the Diagonal Transpose Algorithm

It may be difficult and a heavy task for users to develop
ingenious and optimal algorithms such as the Diagonal
Transpose Algorithm. Hence, it is challenging to extend
the DMM such that even the Naive Transpose Algorithm
runs very efficiently. The SDMM can accelerate the Naive
Transpose Algorithm if the size of matrix is small. We will

show that, on the SDMM with width �, latency �, and super
warps of ���� warps, the Naive Transpose Algorithm runs
in �� �� ������� �

�
�

� ���� � �
��
� � time units using � threads.

The SDMM runs faster than the DMM when � ����

�
�,

but it is not time optimal. On the other hand, the Naive
Transpose Algorithm runs in expected �� �

� � ��
� � time units

on the RSDMM. On the RSDMM, both the Naive Transpose
Algorithm and the Diagonal Transpose Algorithm run in
optimal running time. Table I summarizes the running time
of two transpose algorithms on the three models.

This paper is organized as follows. In Section II, we first
describe the Discrete Memory Machine (DMM). Section III
shows the Naive Transpose Algorithm and the Diagonal
Transpose Algorithm, and evaluates their performance on the
DMM. In Section IV, we present the Super Discrete Memory
Machine (SDMM) and evaluate the performance of two
transpose algorithms on the SDMM. In Section V, we show
the random address shift technique and the Random Super
Discrete Memory Machine (RSDMM). We also prove that,
for any memory access by a super warp with � warps with
� threads each, the memory access congestion is expected
�� ��� � ������� ���� �. Section VI shows the experimental results of
the memory access congestion on the RSDMM. Section VII
concludes our work.

II. DISCRETE MEMORY MACHINE (DMM)

The main purpose of this section is to define the Discrete
Memory Machine (DMM) introduced in our previous pa-
per [11]. The reader should refer to [11] for the details of
the DMM.

Recall that the DMM has three parameters: the width
�, the latency �, and the number � of threads. Let �	�

(� � �) denote a memory cell of address � in the memory.
Let �	�

 ��	�
��	� � �
��	� � ��
��	� � ��
�

�
(� � � � ���) denote the �-th bank of the memory. Clearly,
each memory cell �	�
 (� � �) is in bank �	� ��� �
.
We assume that memory cells in different banks can be
accessed in a time unit, but no two memory cells in the
same bank can be accessed in a time unit. Also, we assume
that � time units are necessary to complete an access request
and continuous requests are processed in a pipeline fashion
through the MMU. Thus, it takes � � � � � time units to
complete � access requests to a particular bank.

Let � ���� � ����

 � � ����� denote � threads. We assume
that � threads are partitioned into �

� groups of � threads,
each of which called a warp. More specifically, � threads are
partitioned into �

� warps � ����� ���,

, � � �� � �� such
that � ���
 �� �� ���� � �� ������

 � � ������ ��� ���
(� � � � �

���). Warps are dispatched for memory access in
turn, and � threads in a warp try to access the memory banks
at the same time. In other words, � ����� ����

 �� � �

� �
�� are dispatched in a round-robin manner if at least one
thread in a warp requests memory access. When � ��� is
dispatched, � threads in � ��� send memory access requests,

one request per thread, to the memory banks. Threads are
executed in SIMD [20] fashion, and all threads must execute
the same instruction. Hence, if one of them sends a memory
read request, none of the others can send memory write
request. We also assume that a thread cannot send a new
memory access request until the previous memory access
request is completed. Hence, after a thread send a memory
access request, it must wait � time units to send a new one.

Figure 4 shows an example of memory access on the
DMM with � (
 �) memory banks and memory access
latency of � (
 �). We assume that each memory access
request is completed when it reaches the last pipeline
stage. Three warps � ����� ���, and � ��� of 4 threads
each access the 4 memory banks. In the DMM, memory
access requests by � ��� are separated into two pipeline
stages, because �	�
 and �	��
 are in the same bank
�	�
. Those by � ��� occupy three pipeline stages, because
three memory access requests destined for �	�
. Also, those
by � ��� occupy two pipeline stages, and thus it takes
�������� �� �
 �� time units to complete the memory
access by the three warps.

Let us define the memory access congestion of a warp
with � threads. Suppose that each of � threads in a warp
sends one access memory access request to a memory bank.
The memory access congestion of a warp is the maximum
number of requests destined for the same bank. More
specifically, the congestion � is ������ 	 � � � � � � ��,
where each �� (� � � � � � �) is the number of memory
requests destined for each �	�
. For example, the congestion
of memory access by � ��� in Figure 4 is 2, because two
requests are destined for �	�
 and �	��
 in bank �	�
.
Clearly, the congestion � is 1 if all � threads in a warp
access distinct banks. On the other hand, if they access the
same bank, the congestion is �. Hence, the congestion by a
warp takes value between 1 and �.

We also assume that, if two or more threads access the
same address, the memory access requests are merged and
processed as a single request. Thus, if all � threads in a
warp access the same address, the congestion is 1. We also
assume that if multiple memory writing requests are sent to
the same address, one of them is arbitrary selected and its
writing operation is performed. The other writing requests
to the same address are removed. Thus, the DMM works as
the Concurrent Read Concurrent Write (CRCW) mode with
arbitrary resolution of simultaneous writing [9], [10], [22].

We can evaluate the performance of algorithms on the
DMM by the number of rounds of memory access and the
congestion. A round of memory access is an operation such
that all of the � threads perform a single memory access to
the memory. Clearly, a round of memory access by � threads
is partitioned into memory access by �

� warps. Suppose
that the DMM performs
 rounds of memory access and
let ���� (� � � � �

� � �� � � � �
 � �) denote
the congestion of warp � ��� in the �-th round. Also, let

Table I
THE RUNNING TIME OF TRANSPOSE ALGORITHMS FOR A

�
���� MATRIX ON THE DMM, THE SDMM AND THE RSDMM

DMM SDMM RSDMM

Naive Transpose ���� ��
�
� �� �

�
�	
���� �

�
�

� ����
� � ��

�
� expected ���

�
� ��

�
�

Diagonal Transpose ���
�

� ��
�
� �� �

�
� ��

�
� expected ���

�
� ��

�
�

Lower bound �� �
�

� ��
�
�

�: width, 	: latency, �: # of threads,
���:# of warps in a super warp

 ���
 ���
 ���

����

����

����

����

�

16

21

4

15

9

3

11

19

2

7

16

21

4

15

9

31119

23

0

0

2

723

	-stage pipeline

0 4 8 12 16 20

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

memory banks

Figure 4. An example of memory access by the Discrete Memory Machine (DMM)

�

�� ��

���

� �

�
��

��� ���� denote the total congestion of the
algorithm. The �-th round of memory access can be done in

�

�
���

���

���� � � � �

time units. Hence, the
 rounds of memory access can be
completed in

� ���
���

�
�

�

�
���

���

���� � � � �

�
�

� ���
���

�

�
���

���

���� � �� � ��

 � � �� � ��

time units. Thus, we have,

Lemma 1: An algorithm running in
 rounds of memory
access and � total congestion on the DMM with latency �
runs in � � �� � ��
 time units.

III. THE NAIVE TRANSPOSE ALGORITHM AND THE

DIAGONAL TRANSPOSE ALGORITHM

The main purpose of this section is to evaluate the
computing time of two algorithms, the Naive Transpose
Algorithm and the Diagonal Transpose Algorithm that trans-
pose a matrix on the DMM. We also prove that the Diagonal
Transpose Algorithm is time optimal.

We first evaluate the computing time of two memory ac-
cess operations, row-major access and column-major access
on the DMM. Suppose that we have a matrix � of size�
����. We assume that

�
� is a multiple of �. Note that

��� ��-element of the matrix is arranged in offset � � ��� �
and thus, it is arranged in bank �	� ��� �
.

Suppose that � threads of the DMM access all of the �
elements in � such that each thread accesses �

� elements.

We can consider two memory access operations, row-major
access and column-major access as follows:

[Row-major access]
for �� � to �� � do in parallel

for �� � to �
� � � do

� � �� � �� ���
�
�

� � �� � �� �� ���
�
�

thread � ��� accesses �	�
	�

[Column-major access]
for �� � to �� � do in parallel

for �� � to �
� � � do

� � �� � �� ���
�
�

� � �� � �� �� ���
�
�

thread � ��� accesses �	�
	�

The reader should refer to Figure 5 illustrating the row-major
access and the column-major access for

�
�
 �
 �.

� ���

row-major

� ���

� ���

� ���

� ���� ���� ���� ���

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

column-major

Figure 5. Row-major access and column-major access

Using Lemma 1, we can evaluate the running time of these
memory access operations on the DMM. In the row-major
access, � threads in a warp access contiguous address. Thus,

they access different banks and the congestion is 1, and the
total congestion is �

� . Also, it performs �
� rounds memory

access. Hence, from Lemma 1, the row-major access takes
�
� � ������

� time units. On the other hand, in the column-
major access, � threads access the same bank, and the
congestion is �. Hence, the total congestion is � and the
column-major access takes �� ������

� time units.
Suppose that we have two matrices � and � of size

�
���

�. Again, we assume that
�
� is a multiple of �. The

following algorithm stores the transpose of � in � using �
threads:

[Naive Transpose Algorithm]
for �� � to �� � do in parallel

for �� � to �
� � � do

� � �� � �� ���
�
�

� � �� � �� �� ���
�
�

thread � ��� performs �	�
	�
� �	�
	�

Let us evaluate the running time. The reader should refer to
Figure 2 illustrating the Naive Transpose Algorithm. Clearly,
� threads read all elements in � in row-major order. However,
they write in � in column-major order. Thus, the Naive
Transpose Algorithm runs in ���� ��

� � time units.
Using the diagonal memory access technique [11], the

transpose can be done with memory access congestion 1.

[Diagonal Transpose Algorithm]
for �� � to �� � do in parallel

for �� � to �
� � � do

� � �� � �� ���
�
�

� � �� � �� �� ���
�
�

thread � ��� performs
�	�
	�� � �� ���

�
�
 � �	�� � �� ���

�
�
	�

Figure 3 illustrates the Diagonal Transpose Algorithm. It
should be clear that this algorithm performs the transpose
correctly. Let us evaluate the running time. Clearly, the
memory access to � and � by a warp destined for distinct
memory banks, and the congestion is 1. Thus, the transpose
algorithm with diagonal access runs in �� �

�� ��
� � time units

using � threads. Thus, we have,
Theorem 2: The Naive Transpose Algorithm and the Di-

agonal Transpose Algorithm for a matrix of size
�
���

�
run in ��� � ��

� � time units and in �� �� � ��
� � time units

using � threads on the DMM with width � and latency �,
respectively.

We prove that the Diagonal Transpose Algorithm is time
optimal. Clearly, each of the � elements in � must be
accessed at least once, and at most � elements in � can
be read in a time unit. Thus it takes at least �� �� � time for
transposing �. Also, each of the � thread can send at most
one memory read request in � time units. Hence, � threads
can send �	

� memory read requests in � time units. Since
�	
� � � must be satisfied, it takes at least �
 ����� � time

units to read � elements in �. Therefore, any algorithm takes
�� �� � ��

� � time units to transpose a matrix of size
�
����

and the Diagonal Transpose Algorithm is time optimal.

IV. THE SUPER DISCRETE MEMORY MACHINE (SDMM)

The main purpose of this section is to define the Super
Discrete Memory Machine (SDMM), the DMM supporting
super warps.

A super warp is a set of warps. Let � denote the number
of warps in a super warp. Since each warp has � threads, a
super warp has �� threads totally. Suppose that each of the
�� threads in a super warp sends a memory access request.
In the SDMM, all memory requests destined for the same
bank are packed such that they are sent to the memory bank
continuously. Figure 6 illustrates an example of memory
access by a super warp with three warps � ���, � ���,
and � ��� of 4 threads each. The reader should compare
Figure 6 with Figure 4, in which three warps access the
same addresses. As illustrated in the figure, memory access
requests in pipeline registers are packed so that they occupy
fewer pipeline stages. In this paper, we do not discuss the
details of the hardware implementation of the SDMM, but
it is not difficult to implement the RPU for the SDMM
(Figure 1 (B)) by few additional circuits.

We define the memory access congestion by a super warp
to be the maximum number of requests destined for the same
bank. More specifically, the congestion is �
 ������ 	 � �
� � ���� where each �� (� � � � ���) is the number of
memory access requests out of �� requests destined for �	�
.
For example, the memory access congestion by the super
warp of three warps in Figure 6 is 6, because 6 memory
access requests are destined for bank �	�
. If �� memory
requests are destined for the � memory banks equally, each
bank receives � memory access requests. We also define the
memory access congestion ratio to be the memory access
congestion per warp, that is,

� . For example, in Figure 6,
the memory access congestion ratio is 	

 �. Clearly, if
all �� threads in a super warp access distinct address, the
memory access congestion is at least � and the memory
access congestion ratio is at least 1. Note that, if multiple
threads access the same address, these values can be smaller.
For example, all �� threads in a super warp read from
the same address, the memory access congestion and the
memory access congestion ratio are 1 and �

� respectively.
Let ����� �����

 � �� �

�� � �� denote super warps such
that each super warp ���� (� � � � �

�� � �) consists of �
warps � �� ������ �� �������

 �� ������ ������. For
simplicity, we assume that � is a multiple of ��. Suppose
that the SDMM performs
 rounds of memory access and
let ���� (� � � � �

�� ��� � � � �
 ��) denote the memory
access congestion of super warp ���� in the �-th round. Also,
let �

�� ��
���

� �

��
��

��� ���� denote the total congestion of the
algorithm. The reader should have no difficulty to confirm
that Lemma 1 also holds for the SDMM.

 ���
 ���
 ���

����

����

����

����

�

16

21

4

15

9

3

11

19

2

7

16

21

4

15

9

31119

23

0

0

2

723

	-stage pipeline

0 4 8 12 16 20

1 5 9 13 17 21

2 6 10 14 18 22

3 7 11 15 19 23

memory banks

Figure 6. An example of memory access by the Super Discrete Memory Machine (SDMM)

Let us evaluate the time necessary to complete the Naive
Transpose Algorithm on the SDMM using Lemma 1 for
the SDMM. For this purpose, we evaluate the column-major
access to a matrix � of size

�
���

� on the SDMM.
Case 1: �� � �

�
Recall that each column of the matrix is in the same bank.
All �� memory requests by a super warp are destined for
the same bank. Thus, the total congestion is �. Hence, the
column-major access takes �� ������

� time units.
Case 2: ��

�
�

Let �
 ���
�

. If this is the case, a super warp accesses �
columns of �. Thus, �� threads in a super warp access
� memory banks such that

�
� threads access the same

bank. Thus, the memory access congestion of a round of
memory access by each super warp is

�
�. Since the column-

major access performs �
� rounds of memory access, the total

congestion is
�
� � �

�� � ��
 �
�
�

�� . Hence, the column-major

access takes �
�
�

�� � ������
� time units.

Combining Cases 1 and 2, we get that the column-major
access is �������� �

�
�

�� � � ��
� � time units. Also, in the

row-major access on the SDMM, the total congestion is �
� .

Similarly, in the the Diagonal Transpose Algorithm on the
SDMM, the total congestion is �

� . Thus, we have,
Theorem 3: The Naive Transpose Algorithm and the Di-

agonal Transpose Algorithm run in �� �
� ������� �

�
�

�� � �
��
� � time units and �� �� � ��

� � time units using � threads on
the SDMM with width �, latency �, and super warp having
� warps.

V. THE RANDOM SUPER DISCRETE MEMORY MACHINE

(RSDMM)

The main purpose of this section is to present a novel
technique that we call the random address shift.

Recall that on the DMM and the SDMM, each �	�

is arranged in bank �	� ��� �
. The idea of the random
address shift is to randomly shift the address mapping to
average the memory access requests destined for memory
banks. We can consider that � is a 2-dimensional array
of width � such that �	�
	�
 (� � �� � � � � � � �)
corresponds to �	� � � � �
 in the 1-dimensional context.

Clearly, �	�
	�
 is in bank �	�
 on the DMM and the
SDMM.

Let 	�� 	��

 denote independent random integers uni-
formly selected from 	�� � � �
. Intuitively, the random
address shift technique rotates each �-th row of � by 	 � .
More specifically, each �	�
	�
 (� � �� � � � � � � �)
is arranged in bank �	�� � 	�� ��� �
. The reader should
refer to Figure 7 illustrating how each address is mapped in
memory banks.

Intuitively, the RSDMM is the SDMM with the Ran-
dom Shift Unit (RSU) as illustrated in Figure 1 (C). The
RSU is used to convert address � � � � � into address
� � � � �� � 	�� ��� �. In other words, a memory access
request destined for bank � is routed to bank ���	 �� ��� �.
Usually, parallel hashing to average the memory access
needs complicated computation [23], [24]. However, the
Random Shift Unit is so simple that it just reads the value
of 	� and performs one addition operation for each memory
access request. Figure 7 illustrates how memory access
requests stored in the �-stage pipeline. Since the super warp
of three warps has 4 memory requests destined for �	�
,
it takes � � � � �
 �� time units to complete these
memory access. The reader should compare Figure 7 with
Figure 4 and Figure 6, in which three warps access the
same addresses. As illustrated in the figure, memory access
requests in pipeline registers of the RSDMM occupy fewer
pipeline stages than the others.

We will prove that the expected value of the congestion
ratio is at most ���� for any memory access by a super
warp of ���� warps on the RSDMM with width �. More
generally, we show that the congestion ratio is �� ��� � ����� ��� ���� �
for any memory access for all � (� �) and � (� � � � ����)
where � is the number of warps in a super warp. For
simplicity, we assume that � threads always access distinct
address. Clearly, this assumption does not decrease the
congestion because memory access requests to the same
address by multiple threads are merged into one. For the
proof, we use an important probability theory called the
Chernoff bound that estimates the tail probability of the
Poisson trials as follows:

Theorem 4 (Chernoff Bound [25]): Let ��, ��,

,
���� be independent Poisson trials such that ��
 � with
probability �� (� � � � � � �). Let �

����
��� �� and

 ���
 ���
 ���

0

4

8 12

16 20

1

5

9 13

17 21

2

6

10 14

18 22

3

7

11 15

19 23 ����

����

����

����

�

16

21

4

15

9

3

11

19

2

7 16

21 4

15

9

3

11

19

23

0 0

27

23

	-stage pipeline

� 3 2 0 0 1 1

 3 2 2 1 2 2

memory banks

Figure 7. An example of memory access by the Random Super Discrete Memory Machine (RSDMM)

�
 �	�

����

��� ��. We have the following inequality
for any Æ
 �:

��	�
 �� � Æ��
 �

�
�Æ

�� � Æ����Æ�

��

We are now in a position of evaluating the expected
value of the congestion using the Chernoff bound for �
(� � � � ����). Note that the base of ��� is 2 and �
is the base of the natural logarithm. We assume that ��
threads in a super warp access to an array � of size �.
Let ��� ���

 � ����� and ��� ���

 � ����� be the indexes
of � such that each thread � ��� (� � � � �� � �) in a
super warp accesses �	��
	��
. Using the random address
shift technique, each � ��� accesses �	��
	���� 	�� � ��� �

instead. Let ���� (� � � � �

���) be the number of memory
access requests destined for �	�
	

. Figure 7 also shows the
values of �. Clearly,

� �
�
��

��� ����
 ��.
We fix a particular bank �	�
 (� � � � � � �) and

evaluate the number of memory access requests destined
for �	�
 for random selection of 	�� 	��

 � 	 �

�
��. Let

��� ���

 � � �
�
�� be random binary variables such that

��
 � iff �	�
	�
 (� � � � �
� � �) is accessed by at

least one of the �� threads. Clearly, ��
 � with proba-
bility ����

� , because ���� elements in �	�
	

 are accessed.
Since 	�� 	��

 � 	 �

�
�� are independent, random variables

��� ���

 � � �
�
�� are also independent. Thus, Theorem 4

can be used to evaluate the value of �

� �

�
��

��� ��, which
is equal to the number of memory access requests destined
for �	�
.

Let ���� be a function such that

 ����

������ �� �� ����

��� ���� � �

We have the following lemma:
Lemma 5: For random variable � defined above, we

have,

��	�
 ����
 � ���

for any � and � such that � � � and � � � � ����.

Proof: Throughout the proof, we assume that � � �
and � � � � ����. Since �
 �	�

������
���

����
�
 �,

it should be clear that

��	�
 �� � Æ��
 �

�
�Æ

�� � Æ����Æ�

��
�

�
�

� � Æ

����Æ��

from Theorem 4. Let �� � Æ��
 ���� and we have,

�����	�
 ����

� �� � Æ�� ���
�

� � Æ

 ���� ���

��

 ����

������ �� �� ����

��� ���� � �
���

���� ���� � ���

����� �� �� ����

 (1)

Let !���� be a function of � such that

!����

��� �� �

��� ���� � �
���

���� ���� � ���

����� �� �� ����

 (2)

From (1) and (2) it is sufficient to prove that !���� � ��,
because �����	�
 ����
 � �� ���� � !���� � ��� ����
if this is the case. We first show !���� � �� for the
boundary cases as follows:

!����

�

��� ���� � �
���

���� ���� � ��

� ����

��������� ���� � ��� ���� ���� � ���

��� ���� � �

� ��� �
� ���� ���� � ���

��� ���� � �

 ��

(from ���"� " � � �
� for all " � �)

!�������

��� ���� � �

��� ���� � �
���

���� ���� � �� ����

����� ���� � �� ����

 ���
�

�

 ��

We next show !���� � �� for all �. Let #
 ��� � � �.
Also, let $��#� be the function such that

$��#�
 !����

#

��� ���� � �
�#� ���#� %��

where

%
 ������� ���� � ��� ��� ���� � �

From the boundary cases above, it is sufficient to show that
$��#� (� � # � ��� ���� � �) is a convex function for the
purpose of proving !���� � �� for all �. We differentiate
$� twice as follows:

$���#�

#� ���#� % � #��� ���

� �

��� ���� � �

�#� ���#� % � ��� �

��� ���� � �

$����#�

�� ���

�

��� ���� � �

Hence, $����#�
 � for all # � �. It follows that $� is convex
and thus, $��#� � �� for all # (� � # � ��� ���� � �).
This completes the proof.

Let & denote a random variable denoting the maximum
number of memory access requests over all banks ���� (� �
� � � � �). From Lemma 5, we have

��	&
 ����
 � ��	�
 ����
 � � � ���
��

Thus, we have,

��	� � & � ����
 � �� and

��	 ���� � & � ��
 � ���
��

Hence, the expected value of & is at most:

�	&
 � ��	� � & � ����
 � ����
���	 ���� � & � ��
 � ��

� � � ���� � ���
�� � ��
 �� ������

from � � ����. Since the congestion ratio is �
� �
� , we have,

Theorem 6: For any memory access by a super warp of
� warps on the RSDMM with width �, the congestion ratio
is expected �� �����

� � for any � � � and � (� � � � ����).
Clearly, �����

�
 ��� � ����
� ��� ����
 � if �
 ����, and thus, we

have,
Corollary 7: For any memory access by a super warp of

���� warps on the RSDMM with width �, the congestion
ratio is expected ���� for any � � �.

Let us evaluate the running time of the Naive Transpose
Algorithm and the Diagonal Transpose Algorithm on the
RSDMM with super warps having ���� warps. Since the
congestion ratio is ����, the memory access by a super
warp of � ���� threads takes ������� time units to send
memory access requests. Thus, the transpose algorithm runs
in �

� ���� ��������� ������
�
 �� ��� ��

� � time units. Thus,
we have,

Theorem 8: Both The Naive Transpose Algorithm and the
Diagonal Transpose Algorithm run in expected �� �

� � ��
� �

time units using � threads on the RSDMM with width �,
latency �, and super warp having ���� warps.

VI. EXPERIMENTAL RESULTS

We will show that the actual value of the congestion ratio
�
� �
� is enough small by simulation. Table II shows these

values obtained by 1,000,000 rounds of simulation, where a
round is a round of memory access by a super warp with ��
threads. In the simulation, every thread selects an address of
the memory independently at random. Since multiple threads
in a warp may select the same address, the congestion ratio
can be less than 1. Since the number � of memory banks of
current CUDA-enabled GPUs are 16 or 32 [7], we evaluate
the congestion ratio �
� �

� for �
 ��� ��� ��� ��� and 256
for considering future extension of GPUs. Also, we perform
the experiment for various number � of warps in a super
warp to see the relation between � and the congestion �
� �

� .
We use the size � of array � is 1024 (
 ���) and 1048576
(
 ���).

In the table, the congestion is underlined when �
 ����.
For example, �
� �

�
 �
��� when �
 ��, �
 �, and
�
 ����. When �
 ����, the congestion may be smaller
than 1 for large � and �, because many threads access the
same address. We can see that the congestion �
� �

� is less
than 2 when �
 ���� and �
 ����. Also, the congestion
is almost 2 when �
 ���� and �
 �������. Recall that,
for any memory access by a super warp, the congestion ratio
on the RSDMM is �� �����

� � from Theorem 6. The table also
shows the values of �����

�
 ����� ���� ����
����� ������� . We can see that

the values of �����

� approximates the congestion ratio for

�
 �������.

VII. CONCLUSION

We have presented the Random Super Discrete Memory
Machine (RSDMM), which supports super warps and ran-
dom address shift technique to reduce the memory access
congestion to memory banks. On the RSDMM, it is guaran-
teed that the overhead of the memory access congestion by
any memory access is at most ���� factor over the perfectly
scheduled memory access. Hence, users do not have to
consider to minimize the memory access congestion when
they develop algorithm on the RSDMM. Thus, the RSDMM
is a promising candidate of a new streaming multiprocessor
architecture for next generation GPUs.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Mor-
gan Kaufmann, 2011.

[2] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Imple-
mentations of a parallel algorithm for computing euclidean
distance map in multicore processors and GPUs,” Interna-
tional Journal of Networking and Computing, vol. 1, no. 2,
pp. 260–276, July 2011.

[3] K. Ogawa, Y. Ito, and K. Nakano, “Efficient canny edge
detection using a gpu,” in Proc. of International Conference
on Networking and Computing, Nov. 2010, pp. 279–280.

Table II
THE CONGESTION RATIO ��� ��� ON THE RSDMM

� 1024 (� ���) 1048576 (� ���) �����
��

�
����� �	�� ����
���� ����	��

� 16 32 64 128 256 16 32 64 128 256 16 32 64 128 256
1 3.038 3.433 3.714 3.808 3.458 3.080 3.533 3.959 4.379 4.766 2.667 3.010 3.347 3.677 4.000
2 2.358 2.574 2.678 2.572 1.999 2.416 2.708 2.982 3.246 3.494 2.667 3.010 3.347 3.677 4.000
3 2.064 2.201 2.217 2.016 1.333 2.134 2.363 2.576 2.778 2.971 2.298 2.594 2.884 3.168 3.447
4 1.888 1.975 1.936 1.674 1.000 1.970 2.163 2.342 2.511 2.671 2.000 2.258 2.510 2.758 3.000

� 5 1.766 1.819 1.738 1.438 0.800 1.861 2.029 2.186 2.333 2.472 1.772 2.000 2.224 2.443 2.658
6 1.675 1.700 1.587 1.256 0.667 1.781 1.932 2.072 2.205 2.329 1.593 1.799 2.000 2.197 2.390
7 1.603 1.604 1.466 1.118 0.571 1.719 1.857 1.986 2.106 2.218 1.450 1.637 1.821 2.000 2.176
8 1.542 1.526 1.365 0.996 0.500 1.670 1.798 1.917 2.027 2.131 1.333 1.505 1.674 1.839 2.000
9 1.492 1.458 1.279 0.889 0.444 1.629 1.749 1.859 1.963 2.059 1.236 1.395 1.551 1.704 1.853
10 1.448 1.399 1.204 0.800 0.400 1.595 1.708 1.812 1.909 1.999 1.153 1.301 1.447 1.589 1.729

[4] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate template
matching using pixel rearrangement on the GPU,” in Proc.
of International Conference on Networking and Computing,
Dec. 2011, pp. 153–159.

[5] K. Nishida, Y. Ito, and K. Nakano, “Accelerating the dynamic
programming for the matrix chain product on the GPU,”
in Proc. of International Conference on Networking and
Computing, Dec. 2011, pp. 320–326.

[6] ——, “Accelerating the dynamic programming for the optial
poygon triangulation on the GPU,” in Proc. of International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP, LNCS 7439), Sept. 2012, pp. 1–15.

[7] NVIDIA Corporation, “NVIDIA CUDA C programming
guide version 5.0,” 2012.

[8] ——, “NVIDIA CUDA C best practice guide version 3.1,”
2010.

[9] A. Gibbons and W. Rytter, Efficient Parallel Algorithms.
Cambridge University Press, 1988.

[10] J. JáJá, An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.

[11] K. Nakano, “Simple memory machine models for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops, May 2012, pp. 788–797.

[12] A. Kasagi, K. Nakano, and Y. Ito, “An implementation
of conflict-free off-line permutation on the GPU,” in Proc.
of International Conference on Networking and Computing,
2012, pp. 226–232.

[13] K. Nakano, “Asynchronous memory machine models with
barrier syncronization,” in Proc. of International Conference
on Networking and Computing, Dec. 2012, pp. 58–67.

[14] ——, “Efficient implementations of the approximate string
matching on the memory machine models,” in Proc. of In-
ternational Conference on Networking and Computing, Dec.
2012, pp. 233–239.

[15] ——, “An optimal parallel prefix-sums algorithm on the
memory machine models for GPUs,” in Proc. of International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP, LNCS 7439). Springer, Sept. 2012,
pp. 99–113.

[16] ——, “The hierarchical memory machine model for GPUs,”
in Proc. of International Parallel and Distributed Processing
Symposium Workshops, May 2013, pp. 591–600.

[17] D. Man, K. Nakano, and Y. Ito, “The approximate string
matching on the hierarchical memory machine, with perfor-
mance evaluation,” in Proc. of International Symposium on
Embedded Multicore/Many-core System-on-Chip, Sept. 2013.

[18] A. Kasagi, K. Nakano, and Y. Ito, “An optimal offline
permutation algorithm on the hierarchical memory machine,
with the GPU implementation,” in Proc. of International
Conference on Parallel Processing, Oct. 2013.

[19] A. V. Aho, J. D. Ullman, and J. E. Hopcroft, Data Structures
and Algorithms. Addison Wesley, 1983.

[20] M. J. Flynn, “Some computer organizations and their effec-
tiveness,” IEEE Transactions on Computers, vol. C-21, pp.
948–960, 1972.

[21] K. Nakano, S. Matsumae, and Y. Ito, “The random address
shift to reduce the memory access congestion on the discrete
memory machine,” in Proc. of International Symposium on
Computing and Networking, Dec. 2013.

[22] M. J. Quinn, Parallel Computing: Theory and Practice.
McGraw-Hill, 1994.

[23] K. Mehlhorn and U. Vishkin, “Randomized and deterministic
simulations of PRAMs by parallel machines with restricted
granularity of parallel memories,” Acta Informatica, vol. 21,
no. 4, pp. 339 – 374, Nov. 1984.

[24] M. Dietzfelbinger and F. M. auf der Heide, “Simple, efficient
shared memory simulations,” in Proc.of ACM Symposium on
Parallel Algorithms and Architectures, June 1993, pp. 110 –
119.

[25] R. Motwani and P. Raghavan, Randomized Algorithms. Cam-
bridge University Press, 1995.

