
A Classification Processor for a Support Vector Machine with embedded DSP slices
and block RAMs in the FPGA

Yuki Ago, Koji Nakano, Yasuaki Ito
Department of Information Engineering

Hiroshima University
Kagamiyama 1-4-1, Higashi-Hiroshima, 739-8527, JAPAN

Abstract—This paper presents an FPGA implementation of
a Support Vector Machine (SVM) classification using the DSP
slices and block RAMs in the Xilinx Virtex-6 family FPGA.
In our approach, the SVM classification is performed by
the multiple DSPs. Our implementation supports 3 types of
kernel functions; the sigmoid kernel, the polynomial kernel,
and the RBF kernel. We connect DSPs with the built-in cascade
logic in a DSP slice. Thus, our architecture consists of a
cascaded DSP pipeline and process the input data with this
pipeline. The number of DSP slices included in this cascade
connection is equal to the number of the support vectors in the
SVM. We have implemented the processor core which includes
768 DSPs for SVM classification in a Xilinx Virtex-6 FPGA
XC6VLX240T-FF1156. The implementation results show that
it can be implemented in the FPGA with 768 DSP48E1 slices,
800 block RAMs and 17680 slices. It runs in 370.096MHz clock
frequency and can evaluate the SVM classification for 128-
dimensional feature space data 2.89 × 106 times per second.

Keywords-Support vector machine, Classification, FPGA,
Embedded DSP slices, Embedded block RAMs

I. INTRODUCTION

Recently, there are many researches that apply machine
learning algorithms such as Support Vector Machine (SVMs)
and Multi Layer Perceptron (MLP) to the pattern recog-
nition, signal processing or image processing. These algo-
rithms train its network with supervised machine learning
before accepting the unlearned input data. The classifier
achieved by the machine learning is widely used for pattern
recognition. The SVM is one of the machine learning algo-
rithms that train a classifier for a two-class classification. It
is well known that SVMs often provide better classification
performance than other machine learning algorithms on
reasonably sized datasets [1]. The reason why SVMs achieve
better generalization ability is that its learning algorithm
employs two advanced methods called margin maximization
and kernel trick.

A Field Programmable Gate Array (FPGA) is a pro-
grammable logic device designed to be configured by the
customer or designer by hardware description language
after manufacturing. The most common FPGA architec-
ture consists of an array of logic blocks, I/O pads, DSP
slices, block RAMs and routing channels. Furthermore,
recent FPGAs have embedded DSP slices and block RAMs

that make a higher performance and a broader application.
Since FPGA chips maintain relative lower price and its
programmable features, it is widely used in those fields
which need to update architecture or functions frequently
such as communication and education areas. They are widely
used in consumer and industrial products for accelerating
processor intensive algorithms [2], [3], [4], [5]. For the
implementation of SVMs, an FPGA is a crucial hardware
platform, which offers high performance and possibility to
modify and change algorithms dynamically.

The Xilinx Virtex-6 series FPGAs have DSP48E1 slices
equipped with a multiplier, adders, logic operators, etc [6].
More specifically, the DSP48E1 slice has a two-input
multiplier followed by multiplexers and a three-input
adder/subtractor/accumulator. The DSP48E1 multiplier can
perform multiplication of an 18-bit and a 25-bit two’s com-
plement numbers and produce one 48-bit two’s complement
production. Programmable pipelining of input operands,
intermediate products, and accumulator outputs enhances
throughput and improves the frequency. The DSP48E1 also
has pipeline registers between operators to reduce the delay.
Also, the Virtex-6 FPGA XC6VLX240T has 768 DSP48E1
slices arranged in 8 columns of 96 adjacent DSP48E1 slices.
Neighboring DSP48E1 slices are connected directly through
pipeline registers.

The block RAM in the Virtex-6 FPGA is an embedded
memory supporting synchronized read and write operations.
In Virtex-6 FPGAs, it can be configured as a 36k-bit dual-
port RAMs, FIFOs, or two 18k-bit dual-port RAMs. In our
architecture, it is used as two 1k×18-bit dual-port RAMs.

In this paper, we propose an FPGA implementation for
the SVM classification using DSP slices and block RAMs
effectively. The SVM classification is an SVM that has
been trained and classifies unlearned data. We present the
architectures that perform the computation of an SVM
classification with DSP slices and block RAMs. Our new
idea includes: (i) Efficient Usage of DSP slices and Block
RAMs: DSP slices basically perform multiplication and
accumulation to compute the dot-product and the squared
Euclidean distance in the kernel function of the SVM
classification. DSP slices are directly connected and work in
pipeline fashion. On the other hand, block RAMs are used

to store parameters obtained in the training phase of the
SVMs and used as a look-up-table to compute exponential
functions in the kernel function. (ii) Fully Pipelined Archi-
tecture: We design our new SVM architecture as a fully
pipelined one using Virtex-6 FPGA XC6VLX240T that has
768 DSP48E1 slices arranged in 8 columns of 96 adjacent
DSP48E1 slices. Neighboring DSP48E1 slices are connected
directly through pipeline registers. Considering the structure,
we design the circuit of the SVM classification efficiently
using DSP slices.

Using these ideas, our new architecture for the SVM
classification with 128-dimension feature space, 760 support
vectors, uses 768 DSP slices and 800 block RAMs. The
computing time necessary to classify an input feature vector
is 338 clock cycles. Since the circuit works in fully pipelined
architecture, after an input data is input, the next input
data can be input immediately. The experimental results
shows that our circuit runs in 370.096MHz and can evaluate
2.89 × 106 times per second for the SVM classification
with 128-dimension feature space. Note that in this paper,
our goal is to accelerate the classification of the SVM that
has already been trained in advance, not to accelerate the
training of the SVM. In other words, the parameters of the
SVM obtained by training phase are computed on a host PC.
These parameters are stored in block RAMs of the FPGA
connected to a host PC.

Many hardware algorithms with FPGAs to accelerate the
computation of the SVM classification have been proposed
in past [7], [8], [9], [10], [11], [12]. As far as we know, how-
ever, there is no previously published work that fully utilizes
DSP slices and block RAMs for the SVM classification.

This paper is organized as follows. Section II introduces
the SVM. We show the FPGA architecture for the SVM
classification in Section III. Section IV evaluates the per-
formance of our implementation. We show the experimental
results in Section V. Finally, Section VI concludes the paper.

II. SUPPORT VECTOR MACHINE

The main purpose of this section is to review the SVM.
The SVM is one of the supervised machine learning algo-
rithms that train a classifier for a binary classification [13].
The SVM classifies an input data set into two classes that
are labeled as +1 or −1. The SVM constructs separating
hyperplanes between them. The separating hyperplanes that
best separates the two classes is called the maximum-margin
hyperplane and forms the decision boundary for classifica-
tion. The data sets lying at the boundary for each class are
called support vectors. The SVs are obtained in the training
phase and are utilized to classify unknown data. Also, when
two data classes are not linearly separable, a kernel function
is used to project data to a higher dimensional space, which
is called kernel trick.

Suppose that we have a data set T of l samples
x1,x2, . . . ,xl in a d-dimensional space and these samples

exactly belong to one of the two classes (+1,−1). The data
set T is represented as T = {(xi, yi)|i ∈ {1, . . . , l},xi ∈
<d, yi ∈ {+1,−1}}. The training an SVM is equivalent to
solving the following quadratic optimization problem:

minimize
1
2

l∑
i=1,j=1

αiαjyiyjK(xi,xj) −
l∑

i=1

αi(1)

subject to 0 ≤ αi ≤ C for i = 1, . . . , l,
n∑

i=1

yiαi = 0,

where xi are the support vectors, αi are the Lagrangian coef-
ficients, and K(·, ·) is the kernel function. The classification
function f(x) is

f(x) = sign(
n∑

i=1

αiyiK(xi,x) + b), (2)

where x is the new feature vector and b is the threshold,
x1,x2, . . . ,xn are the support vectors, and α1, α2, . . . , αn,
and b are the parameters. During the training phase, xi,
αi and b are obtained. In our proposed architecture, this
equation is computed for given input feature vectors. Re-
garding the kernel function, there are three different types
of kernel basis functions that are commonly used; the
sigmoid kernel, the polynomial kernel, and the radial basis
function (RBF) kernel. These are used to create nonlinear
classifiers by applying the kernel trick [14]. The definition
of the kernels is as follows; the sigmoid kernel: K(u,v) =
tanh(su · v − t) for s, t > 0, the polynomial kernel:
K(u,v) = (u · v + 1)d, and the RBF kernel: K(u,v) =
exp(−‖u−v‖2

2σ2) for σ > 0. The parameters s, t, d, and σ are
determined in the training phase. Also, u · v and ‖u− v‖2

represent the dot-product and the squared Euclidean distance
between two vectors u and v, respectively. In fact, an SVM
with the sigmoid kernel function is equivalent to a three-
layer-perceptron neural network [15].

In our work, the training phase is performed on a host PC
to determine appropriate parameters. There parameters are
stored in block RAMs of the FPGA connected to a host PC.
Therefore, to classify a given feature vector x, our proposed
circuit evaluates the classification function f(x) in Eq. (2)
with one of the above kernel functions using the parameters
determined in the training phase.

III. THE ARCHITECTURE OF AN SVM CLASSIFICATION
CIRCUIT

This section describes the architecture of our SVM classi-
fication circuit. The main idea of our architecture is to effec-
tively utilize the cascaded DSP48E1 slices and block RAMs
in Xilinx Virtex-6 FPGA. We use Xilinx Virtex-6 fam-
ily FPGA XC6VLX240T-FF1156 as the target device [6].
It consists of columns of slices each of which includes

two Configurable Logic Blocks (CLBs), programmable In-
put/Output Blocks (IOBs), DSP48 slices, and 36k-bit dual-
port block RAMs.

The classification function of the SVM in Eq. (2) is
divided into two steps of computations. The first step is to
compute the kernel function K(·, ·). As shown in the above,
there are three typical kernel functions; the sigmoid kernel,
the polynomial kernel, and the RBF kernel. We present the
architecture that supports these three kernel functions. The
second step is to compute the sum of the products of the
kernel function and the weights αiyi. In order to implement
the computation, it is necessary to compute the dot-product
between support vectors and an input feature vector. In our
architecture, we use DSP slices to compute the dot-product.
To store the weights αiyi, we use block RAMs. Also, we
use block RAMs to store a table to compute the exponential
function in the kernel function.

A. Data representation

The choice of data precision is guided by the implemen-
tation cost in terms of area, simplicity of design, speed and
power consumption. On the one hand, higher precision will
lead to less quantization error in the final implementation.
On the other hand, lower precision will produce more
compaction and faster designs with less power consumption.
A trade-off choice needs to be made depending on the given
application and available FPGA resources.

In our work, in order to minimize chip space and compu-
tation time, short fixed-point representations of numbers are
used. The data format (input, weight, intermediate result and
output) is 18-bit fixed point number in our system, which
consists of 1-bit sign, 3-bit integer, and 14-bit fraction based
on two’s complement. According to papers [16], [17], [18],
the precision is sufficient to perform the computation in the
SVM. The data format is just like SIII.FFFFFFFFFFFFFF,
where S is sign bit, I is integer bit and F is fraction bit. Thus,
the discrete error is at most ε = 2−14 ≈ 6.1 × 10−5, and
the maximum is 0111.11111111111111 = 8 − ε and the
minimum is 1000.00000000000000 = −8. Consequently,
real numbers in our system are in the rage [−8, 8 − ε] with
precision 6.1×10−5. Also, if the interim value is out of this
range, it is rounded either to the maximum or the minimum.

B. The usage of block RAMs

In this section, we describes how block RAMs are used.
We have used three types of block memories, as follows.
(i) SV-RAM: Block RAMs are used to store the feature
values of each support vector xi. The number of SV-RAMs
corresponds to the number of support vectors determined in
the training phase. To compute the kernel function, the stored
data is used. (ii) K-RAM: Block RAMs are used to store
a table to compute the exponential function in the kernel
function. (iii) W-RAM: Block RAMs are used to store the
weight values αiyi and the offset value b in Eq. (2).

C. Implementation of the kernel functions

One of the design challenges with the SVM on the
FPGA is the kernel function. There are three typical kernel
functions; the sigmoid kernel, the polynomial kernel and the
RBF kernel as shown in Section II. In our work, we present
the architecture supporting these three kernel functions.

According to the kernel functions shown in Section II,
the computation of them mainly consists of two parts; (1)
the dot-product or the squared Euclidean distance between
a support vector and an input feature vector, and (2) the
exponential function. The dot-product is computed in the
sigmoid kernel and the polynomial kernel, and the squared
Euclidean distance is computed in the RBF kernel. To
compute the dot-product and the squared Euclidean distance,
we use one DSP slice for each. On the other hand, a K-
RAM is used to compute the exponential function. In the
followings, we explain the details of the implementation.

Figure 1 illustrates our circuit for the computation of
the dot-product with one DSP slice and one block RAM.
Given the elements of an input feature vector x one by one,
the corresponding elements of the support vector xi stored
in the SV-RAM are input to the DSP slice and the DSP
slice computes the dot-product between two vectors. The
configuration of the DSP slice in this circuit consists of an
18×18 bit two’s complement multiplier, a 48-bit adder, and a
48-bit register. The DSP slice computes the dot-product with
them. After the computation of the dot-product, the result is
output. Note that this circuit is used for one support vector
and an input feature vector. Therefore, if the number of the
support vectors in the SVM is n, n circuits are necessary.

× +

DSP slice

SV-RAM
xi

Input vector x

Block RAM

x · xi

Figure 1. The circuit for the computation of the dot-product in the sigmoid
and polynomial kernels

On the other hand, Figure 2 illustrates our circuit for the
computation of the squared Euclidean distance with one DSP
slice and one block RAM. The structure of the circuit is
similar to that for the above. The main difference is that
an additional subtractor with CLBs is used. The subtractor
computes the difference of the corresponding elements of an
input vector and a support vector. The DSP slice computes
the sum of squares. Similarly, if the number of the support
vectors in the SVM is n, n circuits are necessary.

In order to compute the exponential function in the kernel
functions, we take a look-up-table implementation using a
block RAM. For each kernel function, the look-up-table is
used, as follows.

× +

DSP slice

SV-RAM
xi

Input vector x

Block RAM

−

CLB

‖x − xi‖
2

Figure 2. The circuit for the computation of the squared Euclidean distance
in the RBF kernel

The sigmoid kernel: The value of tanh(sp − t) is stored
in the address of p.

The polynomial kernel: The value of (p+1)d is stored in
the address of p.

The RBF kernel: The value of exp(− p
2σ2) is stored in the

address of p.
Given the results of the above circuit, each exponential
function are computed with a K-RAM as shown in Figure 3.
Recall that the data format is 18-bit fixed point number in
our system. If we implement full 18-bit precision, for com-
puting the above, we need a look-up-table of size 18 × 218

bits. However, the size of a block RAM is 18 × 210. Thus,
we use for 18kbit block RAMs and the most significant 12
bits of interim values of the result of the dot-products and
the squared Euclidean distance as the address of the look-
up-table.

x · xi

or
‖x − xi‖

2
K-RAM K(xi,x)

Block RAM

Figure 3. The circuit for the exponential function using a K-RAM

D. Implementation of the SVM classification

After the computation of the kernel function, to complete
the computation of f(x) in Eq. (2), the computation of the
n dot-products between K(xi,x) and αiyi for (1 ≤ i ≤ n),
and the comparison with b are necessary. Figure 4 illustrates
our circuit for the computation. The circuit for this dot-
product is very similar to that for the dot-product in the
kernel function. The difference is using a W-RAM storing
the coefficients α1y1, α2y2, . . . , αnyn instead of an SV-
RAM. For the result of the dot-product, it is compared with
a threshold value b. If the result is greater than or equal to
b, the comparator outputs 1 showing that the input feature
is labeled as +1. If not, the comparator outputs 0 showing
that the input feature is labeled as −1.

E. The fully pipelined architecture using cascaded DSP
slices

In this section, we show a fully pipelined architecture
for the SVM classification using cascaded DSP slices using

× +

DSP slice

W-RAM
α1y1, . . . , αnyn

K(x1,x), . . . K(xn,x)

Block RAM

f(x)
>

b

Figure 4. The circuit for the classification

the above circuits. The outline of the whole circuit of the
SVM classification is illustrated in Figure 5. Recall that the
DSP48 slice is a configurable slice with a multiplier, an
adder, and registers. In our architecture, we use three types
of configurations illustrated in Figure 6. The readers can
find that the configuration of the DSP slice has been shown
in the above. The difference between them is that Type 2
employs two additional registers. Since ports BCIN and
BCOUT in adjacent DSP48 slices are directly connected,
one Type 1 DSP48 slice and several Type 2 DSP48 slices
can be connected as illustrated in Figure 5. Note that the
computation for the RBF kernel cannot be performed within
only one DSP slice as mentioned the above. The additional
subtractor and the two registers are implemented by CLB
slices. Also, Type 3 DSP48 slice is utilized in the multiple
cascaded DSP slices. According to this architecture, the
circuit can work in the fully pipelined architecture.

Input vector x

SV-RAM
x1

Type 1
B

A
P

BCOUT

SV-RAM
x2

Type 2
BCIN

A
P

BCOUT

SV-RAM
xn

Type 2
BCIN

A
P

K-RAM
Type 1

B

A
P

W-RAM

f(x)

Circuit for the kernel function with cascaded DSP slices

>

b

Figure 5. Outline of the SVM classification circuit with the cascaded DSP
slices in a single column

However, there is a limitation for the number of DSP
slices that can be directly connected. Also, the connection
is used only in the adjacent DSP slices, that is, the ports
BCIN and BCOUT are connected only to BCOUT and
BCIN in the adjacent DSP slice, respectively. For example,
the limitation of the Virtex-6 FPGA XC6VLX204T, which
is the target device in our wok, is 96 DSP slices. Therefore,
we cannot construct more than 96 DSP slices as illustrated
in Figure 5. Since the number of the cascaded DPS slices
corresponds to the number of support vectors, our architec-
ture accept an SVM with at most 96 support vectors. In
our work, to support the SVM with more support vectors, a
single column of the cascaded DSP slices are divided into
multiple columns as illustrated in Figure 7. In the circuit,
to compute the dot-product between the outputs of a K-
RAM and a W-RAM with Type 1 DSP slice in Figure 5,
we use m Type 3 DSP slices and m W-RAMs, where m
is the number of the columns of the cascaded DSP slices.
Type 3 DSP slices are used to compute the local dot-product
in the corresponding column and to sum them by selecting

× +

A

BCOUT

P

P

B

× +

A

B

BCOUT

P

P−

CLB slices

(a) The sigmoid and polynomial (b) The RBF kernel
kernels

Type 1: multiplier accumulator

× +

A

BCOUT

P

P

BCIN

× +

A

BCOUT

P

P−

CLB slices

BCIN

(a) The sigmoid and polynomial (b) The RBF kernel
kernels

Type 2: multiplier accumulator with two registers

× +

A

B

P

P

C

Type 3: multiplier accumulator with an additional input port

Figure 6. Three types of configurations of the DSP48 slice

the function. Using this circuit, we can accept an SVM
with more support vectors. Note that since the W-RAM in
the single column architecture is also divided into m parts,
the number of entries of each W-RAM is reduced to 1

m .
However, the number of input/output ports is limited, the
number of W-RAMs increases from 1 to m.

IV. PERFORMANCE EVALUATION

Let us evaluate the performance of the architecture of
the SVM classification. Again, let d, n, and m denote the
numbers of dimensions of the feature space, support vectors,
and columns of the cascaded DSPs. Recall that our circuit
can work in fully pipelined architecture. Our circuit works
as follows: The input feature vector of d elements to be
classified is provided to the circuit such that each element is
given to the circuit in every clock cycle one by one. Hence,
d elements of the feature vector are provided in d clock
cycles. Therefore, the circuit takes d+2d n

me+m+12 clock
cycles to classify an input feature vector. After inputting the
feature vector, the next input feature vector can be provided
immediately.

Next, let us evaluate the utilized resources of the circuit.
From Figure 7, the number of the DSP slices is m + n.
Also, since the number of entries of the 18k-bit block RAM
is 1024, the numbers of 18k-bit block RAMs for each of an
SV-RAM, a K-RAM, and a W-RAM are nd d

1024e, 4m, and

Input vector x

Type 1
B

A
P

BCOUT
Type 2

BCIN

A
P

K-RAM
Type 3

B

A
P

W-RAM

f(x)
>

b

C

Type 1
B

A
P

BCOUT
Type 2

BCIN

A
P

K-RAM
Type 3

B

A
P

W-RAM

C

Type 1
B

A
P

BCOUT
Type 2

BCIN

A
P

K-RAM
Type 3

B

A
P

W-RAM

C

SV-RAM
Type 1

B

A
P

BCOUT
Type 2

BCIN

A
P

K-RAM
Type 3

B

A

P

W-RAM

C

0

SV-RAM

SV-RAM SV-RAM

SV-RAM SV-RAM

SV-RAM SV-RAM

Figure 7. The architecture with the cascaded DSP slices divided into the
multiple columns

md d
1024me, respectively.

According to the above evaluation, for example, if we
have implemented a circuit of an SVM classifier with 128-
dimension feature space, 760 support vectors, and 8 columns
of cascaded DSP slices, the computing time for evaluating
an input feature vector is 128 + 2 × d 760

8 e + 8 + 12 = 2 ×
95+8+12 = 338 clock cycles. Input feature vectors can be
provided to the circuit in every 128 clock cycles. Also, the
number of utilized DSP slices is 760+8 = 768. The number
of 18k-bit block RAMs is 760d 128

1024e+4×8+8d 128
1024×8e =

760 × 1 + 4 × 8 + 8 × 1 = 800.

V. EXPERIMENTAL RESULTS

We have evaluated the performance of our SVM classifier
circuit using the Xilinx Virtex-6 family FPGA 6VLX240T-
FF1156. Table I shows summarizes the experimental results
for three types of the SVM classifiers using ISE Foundation
14.1. The numbers of used DSP48 slices and 18k-bit block
RAMs, and clock cycles necessary to classify one input fea-
ture vector are equal to the results of the evaluation presented
in Section IV. We note that the number of CLB slices for
the sigmoid and polynomial kernels and the RBF kernel
are different because the circuit of the kernel function is
different shown in Section III. Therefore, since in the circuit
for the RBF kernel, additional CLB slices are necessary, the
number of used CLB slices for the RBF kernel in is more
than that for the sigmoid and polynomial kernels. However,
the clock frequency of them does not change since pipeline
registers are inserted to both circuits. According to the table,
the clock frequency does not depend on the numbers of
support vectors and columns of cascaded DSP slices. The
throughput corresponds to the number of input vectors that
can be classified in one second and each throughput is

Table I
PERFORMANCE EVALUATION FOR THREE TYPES OF SVM CLASSIFICATION CIRCUITS

of dimensions of feature space 128 128 128
of support vectors 95 475 760
of columns of cascaded DSP slices 1 5 8
DSP48E1 slices 96 480 768
18k-bit block RAMs 100 500 800

The sigmoid kernel CLB slices 3930 19650 31440
The polynomial kernel Clock frequency [MHz] 370.096 370.096 370.096

Time [clock cycles] 331 335 338
Throughput [1/s] 2.89 × 106 2.89 × 106 2.89 × 106

DSP48E1 slices 96 480 768
18k-bit block RAMs 100 500 800

The RBF kernel CLB slices 7332 36660 58688
Clock frequency [MHz] 370.096 370.096 370.096
Time [clock cycles] 331 335 338
Throughput [1/s] 2.89 × 106 2.89 × 106 2.89 × 106

identical. This is because the throughput depends only on
the number of dimensions of the feature space.

VI. CONCLUSION

In this paper, we presented an FPGA implementation for
an SVM classification efficiently using DSP slices and block
RAMs and implemented it in the Xilinx Virtex-6 family
FPGA. Our circuit can work in fully pipelined architecture
and support three typical kernel functions; the sigmoid
kernel, the polynomial kernel, and the RBF kernel. Experi-
mental results show that our implementation can perform in
extremely high speed and throughput.

REFERENCES

[1] S. Marsland, Machine Learning: An Algorithmic Perspective.
Chapman and Hall/CRC, 2009.

[2] J. L. Bordim, Y. Ito, and K. Nakano, “Accelerating the CKY
parsing using FPGAs,” IEICE Transactions on Information
and Systems, vol. E86-D, no. 5, pp. 803–810, May 2003.

[3] ——, “Instance-specific solutions to accelerate the CKY pars-
ing for large context-free grammars,” International Journal on
Foundations of Computer Science, pp. 403–416, 2004.

[4] Y. Ito and K. Nakano, “Efficient exhaustive verification of
the Collatz conjecture using DSP blocks of Xilinx FPGAs,”
International Journal of Networking and Computing, vol. 1,
no. 1, pp. 19–62, 2011.

[5] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor
core approach for CRT-based RSA decryption,” International
Journal of Networking and Computing, vol. 2, no. 1, pp. 79–
96, 2012.

[6] Xilinx Inc., Virtex-6 Family Overview, 2010.

[7] P. J. Pingree, L. J. Scharenbroich, and T. A. Werme, “Im-
plementing legacy-C algorithms in FPGA co-processors for
performance accelerated smart payloads,” in Proc. of IEEE
Aerospace Conference, 2008, pp. 1–8.

[8] M. Ayinala, “Low-power architecture for signal processing
and classification systems,” Ph.D. dissertation, The University
of Minnesota, August 2012.

[9] M. Papadonikolakis and C.-S. Bouganis, “Novel cascade
FPGA accelerator for support vector machine classification,”
IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 23, no. 7, pp. 1040–1052, 2012.

[10] M. Ruiz-Llata, G. Guarnizo, and M. Yébenes-Calvino,
“FPGA implementation of a support vector machine for
classification and regression,” in Proc. of International Joint
Conference on Neural Networks, 2010, pp. 2037–2041.

[11] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, “Feed-
forward support vector machine without multipliers,” IEEE
Transactions on Neural Networks, vol. 17, no. 5, pp. 1328–
1331, 2006.

[12] S. Kim, S. Lee, and K. Cho, “Design of high-performance
unified circuit for linear and non-linear SVM classifications,”
Journal of Semiconductor Technology and Science, vol. 12,
no. 2, pp. 162–167, June 2012.

[13] C. Cortes and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, pp. 273–297, 1995.

[14] D. Anguita, A. Boni, and S. Ridella, “A digital architecture
for support vector machines: Theory, algorithm, and FPGA
implementation,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 14, no. 5, pp. 993–1009, 2003.

[15] A. R. Omondi and J. C. Rajapakse, FPGA Implementations
of Neural Networks. Springer, 2006.

[16] D. Anguita, A. Boni, and S. Ridella, “Learning algorithm for
nonlinear support vector machines suited for digital VLSI,”
Electronics Letters, vol. 35, no. 16, pp. 1349–1350, 1999.

[17] ——, “Digital VLSI algorithms and architectures for support
vector machines,” International Journal of Neural Systems,
vol. 10, no. 3, pp. 159–170, June 2000.

[18] D. Anguita, A. Ghio, S. Pischiutta, and S. Ridella, “A
hardware-friendly support vector machine for embedded au-
tomotive applications,” in Proc. of International Joint Con-
ference on Neural Networks, 2007, pp. 1360–1364.

