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Abstract—A task array is a 2-dimensional array of tasks with
dependency relations. Each task uses the resulting values of some
tasks in the left columns, and so it can be started only after these
left tasks are completed. Conventional CUDA implementations
repeatedly perform a separated CUDA kernel call for each
column from left to right to synchronize the computation for
tasks. However, this conventional CUDA implementation has
several drawbacks: a CUDA kernel call has a certain overhead,
and the running time of a CUDA kernel is determined by a
CUDA block that terminates lastly. Also, every task must write
and preserve the resulting values in the global memory with
low memory access performance for the following tasks. The
main contribution of this paper is to introduce task arrays and
to present Single Kernel Soft Synchronization (SKSS) technique
that significantly reduces such overheads for task arrays. The
SKSS performs only one CUDA kernel call and CUDA blocks
assigned to each row of a task array using a global counter.
To clarify the potentiality of our SKSS technique, we have
implemented the dynamic programming for the 0-1 knapsack
problem, the summed area table computation, and the error
diffusion of a gray-scale image using our SKSS technique and
compared with previously published best GPU implementations.
Quite surprisingly, the experimental results using NVIDIA Titan
X show that, our SKSS implementations are 1.29-2.11 times faster
for the 0-1 knapsack problem, 1.08-1.56 times faster for the
summed area table computation, and 1.61-2.11 times faster for
the error diffusion.

I. INTRODUCTION

A GPU (Graphics Processing Unit) is a specialized cir-
cuit designed to accelerate computation for building and
manipulating images. Latest GPUs are designed for general
purpose computing and can perform computation in applica-
tions traditionally handled by the CPU. Hence, GPUs have
recently attracted the attention of many application developers.
NVIDIA provides a parallel computing architecture called
CUDA (Compute Unified Device Architecture) [1], the com-
puting engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel
computational elements in NVIDIA GPUs. In many cases,
GPUs are more efficient than multicore processors [2], since
they have thousands of processor cores and very high memory
bandwidth.

A CUDA-enabled GPU has multiple steaming processors,
each of which has execution cores with integer and floating
point operations, shared memory, register file, and L1 cache.

global memory

shared memory

register file

streaming
multiprocessor

shared memory

register file

streaming
multiprocessor

shared memory

register file

streaming
multiprocessor

GPU architecture

CUDA programming model : CUDA kernel

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

CUDA
block

Fig. 1. CUDA programming model and GPU architecture

A CUDA program running on a host PC invokes one or
more CUDA kernels executed on a GPU one by one. Each
CUDA kernel consists of one or more CUDA blocks, a set
of threads running on a streaming multiprocessor. When a
CUDA kernel is executed, CUDA blocks are dispatched to
streaming multiprocessors in turn. If the number of CUDA
blocks in a CUDA kernel that exceeds the total number of
CUDA blocks run on a GPU as illustrated in Figure 1, CUDA
blocks that are not allocated in a streaming multiprocessor
wait for termination of a running CUDA block. Since there
is no explicit rule of CUDA block assignment to streaming
multiprocessors, we need to design CUDA kernel programs
so that they work correctly for any CUDA block assignment
to streaming multiprocessors. Hence, there is no direct way
to communicate between CUDA blocks in the same CUDA
kernel. If we write a CUDA kernel program so that CUDA
block A receives a data from CUDA block B, a CUDA kernel
may stall due to deadlock; It is possible that CUDA block B
can run only after CUDA block A terminates, and CUDA
block A terminates only after receiving a data from CUDA



block B. Thus, we should use separated CUDA kernel calls to
synchronize execution of CUDA blocks as shown in Figure 2.
Since a CUDA block A in a CUDA kernel has been terminated
when a CUDA block B in the following CUDA kernel is
executed, CUDA block A can transfer a data to CUDA
block B through the global memory. Note that such deadlock
never occurs in commonly used multiprocessor system running
in time sharing mode, because every thread/process will be
dispatched and run sooner or later.
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Fig. 2. Synchronization and communication between CUDA blocks in
different kernel calls

A task array is a 2-dimensional array of tasks ti,j with
dependency relations as illustrated in Figure 3. For example,
each task uses the resulting values of some tasks in the left
columns, and it can be started only after these left tasks are
completed. In the figure, such task dependency is illustrated
using an directed edge. Conventional CUDA implementations
repeatedly perform a separated CUDA kernel call for each
column from left to right to synchronize the computation of
tasks so that all tasks in the left rows have been completed
when tasks are started. However, this conventional CUDA
implementation has several drawbacks. Since each CUDA
kernel call has a certain overhead, many CUDA kernel calls
degrade the performance. Also, the running time of each
CUDA kernel is determined by a CUDA block that terminates
lastly. Further, every CUDA block working for a task must
write and preserve necessary resulting values in the global
memory with low memory access performance, because they
are used by following tasks as illustrated in Figure 2.

The main contribution of this paper is to present Single
Kernel Soft Synchronization (SKSS) technique, which signifi-
cantly reduces such overheads of conventional CUDA imple-
mentations with multiple CUDA kernel calls to complete all
tasks in a task array. It performs only one CUDA kernel call,
and CUDA blocks in it are assigned to each row of a task
array. The assignment is controlled using a global counter so
that no deadlock occurs. Also, synchronization is performed
by communication through the global memory. To clarify
the power and the potentiality of our SKSS technique, we
have implemented three parallel algorithms using the SKSS
technique: (1) dynamic programming for the 0-1 knapsack
problem, (2) summed area table computation, and (3) error
diffusion of a gray-scale image. We have also implemented
the previously published CUDA implementations for the 0-1

t0,0 t0,1 t0,2 t0,3 t0,4 t0,5

t1,0 t1,1 t1,2 t1,3 t1,4 t1,5

t2,0 t2,1 t2,2 t2,3 t2,4 t2,5

t3,0 t3,1 t3,2 t3,3 t3,4 t3,5

0 1 2 3 4 5

Fig. 3. An example of a forward task array

knapsack problem [3], [4], the summed area table [5], [6],
and the error diffusion [7]. The experimental results using
NVIDIA Titan X show that, our SKSS implementation is
1.29-2.11 times faster for the 0-1 knapsack problem, 1.08-1.56
times faster for the summed area table computation, and 1.61-
2.11 times faster for the error diffusion, than these previously
published results.

We can think that the prefix-scan [8], [9], [10] is a 1-
dimensional task array that has only the first row of a 2-
dimensional one. Separated kernel calls for barrier synchro-
nization are performed in the conventional prefix-sums com-
putation [8]. A synchronization technique using an atomic
global counter to control scheduling of prefix-scan has been
shown [9], [10]. Our SKSS technique for task arrays is also
uses an atomic global counter to ensure that it never stalls.

This paper is organized as follows. In Section II, we
introduces forward/fair/backward task arrays and sequen-
tial/parallel algorithms to complete all tasks in task arrays.
Section III introduces GPU architecture and CUDA program-
ming model to understand the SKSS technique, and shows
conventional implementations that performs multiple CUDA
kernel calls. We then go on to show our new Single Kernel Soft
Synchronization (SKSS) technique that completes all tasks
in task arrays by a single CUDA kernel call in Section IV.
In Section V, we apply SKSS technique to implement the
dynamic programming for the 0-1 knapsack problem, the
summed area table computation, and the error diffusion for
a gray-scale image, and show the experimental results using
NVIDIA Titan X. Section VI concludes our work.

II. TASK ARRAYS AND SEQUENTIAL AND PARALLEL
ALGORITHMS

A task array is a 2-dimensional array of m × n tasks. Let
ti,j (0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1) denote a task in the
i-th row of the j-th column. A task graph is a graph such that
nodes are tasks of a task array and directed edges of two tasks
represent the dependency of them. A directed edge (ti,j , ti′,j′)
from ti,j to ti′,j′ means that task ti,j must be completed before
task ti′,j′ starts, because the resulting values of ti,j is used in



the computation of ti′,j′ . We assume that a task graph has
neighbor edges (ti,j , ti,j+1) for all i and j (0 ≤ i ≤ m − 1
and 0 ≤ j ≤ n− 2), and additional edges. Task arrays can be
classified using additional edges as follows:

forward if all additional edges (ti,j , ti′,j′) of the task graph
satisfy i < i′ and j < j′,

fair if all additional edges (ti,j , ti′,j′) satisfy i < i′ and j ≤
j′, and

backward if all additional edges (ti,j , ti′,j′) satisfy i < i′.

The reader should refer to Figures 3, 4, and 5 illustrating
examples of forward/fair/backward task graphs of 4× 6 tasks.
We call task arrays represented by forward/fair/backward task
graphs forward/fair/backward task array, respectively. From
the definitions, a forward task array is also fair/backward, and
a fair task array is backward. Hence, algorithms designed for
backward task arrays also work correctly for forward/fair task
arrays.
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Fig. 4. An example of a fair task array
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Fig. 5. An example of a backward task array

We can design two straightforward sequential algorithms,
Horizontal and Vertical algorithms to complete all tasks in
task arrays as follows:

Sequential Algorithm Horizontal
for i← 0 to m− 1 do

for j ← 0 to n− 1 do
Task ti,j is performed;

end for
end for
Sequential Algorithm Vertical
for j ← 0 to n− 1 do

for i← 0 to m− 1 do
Task ti,j is performed;

end for
end for

Sequential Algorithm Horizontal works correctly for for-
ward/fair/backward task arrays, because they have no upper-
directed edge. However, Sequential Algorithm Vertical may
not work for a backward task array because the task graph
may have left-directed edge such as (t0,1, t1,0) in Figure 5.

Next, we will show parallel algorithms for task arrays.
Each task can be started after tasks in the left columns are
completed. Thus, we can design a parallel algorithm for a
forward task array as follows:

Parallel Algorithm Forward
for j ← 0 to n− 1 do

for i← 0 to m− 1 do in parallel
Task ti,j is performed;

end for
end for

In Figure 3, tasks in the same dotted line are performed at the
same time.

A parallel algorithm for a fair task graph is a little com-
plicated. We say that a task ti,j is k-diagonal if k = i + j.
From Figure 4, k-diagonal tasks can be performed after all
(k−1)-diagonal tasks are completed. Using this idea, Parallel
Algorithm Diagonal performs k-diagonal tasks from k = 0 to
m+ n− 2 in turn. The details are spelled out as follows:

Parallel Algorithm Diagonal
for k ← 0 to m+ n− 2 do

i← max(0, k − n+ 1);
j ← min(k, n− 1);
L← min(k + 1, (m+ n− 2)− k + 1,m, n);
for l← 0 to L− 1 do in parallel

Task ti+l,j−l is performed;
end for

end for
In Figure 4, tasks in the same dotted line are performed in par-
allel in Parallel Algorithm Diagonal and numbers correspond
to the values of k.

Similarly to Parallel Algorithm Diagonal, we can write a
parallel algorithm for a backward task array. However, it is
more complicated, we will show a generic parallel algorithm
using a topological ordering of the corresponding task graph.
A topological ordering of a task graph is an order of tasks
such that, for every directed edge (ti,j , ti′,j′), task ti,j ap-
pears before ti′,j′ . The topological ordering can be obtained
by repeatedly removing a task with no incoming edge. For
example, for a backward task graph in Figure 5, we have a



topological ordering

t0,0t0,1t0,2t1,0t0,3t1,1t0,4t1,2t2,0t0,5t1,3t2,1 · · · t3,5.

We can partition the topological ordering such that no two
nodes in the same partition are connected. For example, the
topological ordering above can be partitioned as follows:

t0,0|t0,1|t0,2t1,0|t0,3t1,1|t0,4t1,2t2,0|t0,5t1,3t2,1| · · · |t3,5.

We assign serial numbers from 0 to these partitions of tasks.
In Figure 5, each dotted line with a number corresponds to
a partition. Let Tk,i denote the i-th task (0 ≤ i ≤ mk − 1)
in partition k (0 ≤ k ≤ P − 1), where P is the number
of partitions and mk is the number of tasks in partition k.
For example, T0,0 = t0,0, T1,0 = t0,1, T2,0 = t0,2, T2,1 =
t1,0, . . ., hold in the example above. Clearly, all tasks in the
same partition can be done in parallel after all tasks in the
previous partitions are completed. Thus, we can design Parallel
Algorithm Backward for backward task arrays as follows:

Parallel Algorithm Backward
for k ← 0 to P − 1 do

for i← 0 to mk − 1 do in parallel
Task Tk,i is performed;

end for
end for

Please note that Parallel Algorithm Backward works correctly
not only for backward task arrays but also forward/fair task
arrays.

Note that in Parallel Algorithms Forward/Fair/Backward,
the barrier synchronization is necessary after each completion
of parallel for-loop for ... do in parallel if tasks are processed
asynchronously. We can also design an asynchronous parallel
algorithm for task arrays that uses no barrier synchronization.
For each task ti,j , let T (ti,j) be a set of tasks such that

T (ti,j) = {ti′,j′ | task graph has edge (ti′,j′ , ti,j)}.

Clearly, we can start task ti,j after all tasks in T (ti,j) are
completed. Thus, we can design parallel algorithm using
T (ti,j) as follows:

Parallel Soft Synchronization Algorithm
for i← 0 to m− 1 do in parallel

for j ← 0 to n− 1 do
Wait until all tasks in T (ti,j) are completed;
Task ti,j is performed;

end for
end for

Clearly, in this parallel algorithm, no barrier synchronization
is necessary. We can think that synchronization is performed
by waiting for completion of all tasks T (ti,j). We call it soft
synchronization.

III. CONVENTIONAL CUDA IMPLEMENTATIONS FOR
PARALLEL ALGORITHMS

This section first explains CUDA programming model and
GPU architecture briefly to understand CUDA implementa-
tions of parallel algorithms and how they are executed on

GPUs. We then go on to show conventional CUDA imple-
mentations of parallel algorithms for task arrays.

A CUDA program running on a host PC invokes one
or more CUDA kernels executed on a GPU in turn. Each
CUDA kernel has one or more CUDA blocks, a set of threads
running on a GPU. Threads in a CUDA block are partitioned
into groups of 32 threads each called warps. All threads
in the same warp work completely synchronously, share the
program counter, and execute the same instruction. Thus,
if Parallel Algorithms Forward/Diagonal/Backward shown in
Section II are executed by a warp of 32 threads, no barrier
synchronization is necessary.

Each CUDA block is dispatched to a streaming multipro-
cessor in a GPU as illustrated in Figure 1. Each thread in a
CUDA block is assigned to registers in the register file. Also, a
CUDA block is assigned to some space of the shared memory
which can be accessed by all threads in the same CUDA
block. A CUDA block occupies such hardware resources on
the streaming multiprocessor until all threads in it terminate
For example, NVIDIA TITAN X has 28 streaming multi-
processors, each of which can execute up to 2048 (resident)
threads and up to 32 CUDA blocks. Hence, for example, a
streaming multiprocessor can run 32 CUDA blocks with 32
threads, 32 CUDA blocks with 64 threads, or 16 CUDA blocks
with 128 threads. All threads in CUDA blocks allocated to the
same streaming multiprocessor work concurrently. Since each
streaming multiprocessor has 128 cores, up to 128 threads in
4 warps run at the same time. Thus, warps in CUDA blocks
allocated to the streaming multiprocessor run in time sharing
mode such that 4 warps out of 2048

32 = 64 (resident) warps
are active. When all threads in all CUDA blocks in a CUDA
kernel terminate, the CUDA kernel is completed and the next
CUDA kernel is called.

When a CUDA block of a CUDA kernel running on a
streaming multiprocessor terminates, a new CUDA block that
has not been allocated yet is assigned to it and starts running.
For example, suppose that a CUDA kernel with 1000 CUDA
blocks with 64 threads each is executed on NVIDIA TITAN
X. Each of 28 streaming multiprocessors can run 32 CUDA
blocks, 28 · 32 = 896 CUDA blocks out of 1000 CUDA
blocks are allocated to them. The remaining 104 CUDA blocks
wait for termination of running CUDA blocks. Note that there
is no explicit rule to select CUDA blocks to be allocated
to streaming multiprocessor. Thus, direct synchronization and
communication between different CUDA blocks in the same
CUDA kernel are not possible. If synchronization and/or
communication between CUDA blocks is necessary, they must
be implemented as separated CUDA kernels. For example,
suppose that CUDA kernel i + 1 is executed after CUDA
kernel i as illustrated in Figure 2. CUDA blocks in CUDA
kernel i write the resulting values of their computation in
the global memory and terminate. After that, CUDA blocks
in kernel call i + 1 can read these resulting values. In this
manner, synchronization and communication of CUDA blocks
in different CUDA kernels are possible. However, when a
CUDA block terminates, all data stored in the shared memory



and register files written by threads in it are discarded. Thus,
all necessary data used by CUDA blocks in the following
CUDA kernel must be written and preserved in the global
memory of the GPU. Since memory access capability of the
global memory is not high, such data backup operations may
degrade the performance.

Let us implement Parallel Algorithm Forward. We assume
that each task ti,j can be done by a CUDA block. We use
separated CUDA kernels to synchronize computation of tasks
performed by multiple CUDA blocks. More specifically, each
i-th CUDA blocks of j-th CUDA kernel performs task ti,j .
The resulting values of tasks are written in the global memory.
The details of the implementation are spelled out as follows:

CUDA implementation of Parallel Algorithm Forward
/* CUDA kernel */
Parallel-Forward(j)
i← blockId;
task ti,j is performed;

/* Host PC CUDA program */
for j ← 0 to n− 1 do

Call Parallel-Forward(j) with m− 1 CUDA blocks;
end for

In this implementation, blockId returns the index of a CUDA
block from 0 to m− 1 for CUDA kernel call with m CUDA
blocks. Parallel Algorithm Fair can be implemented in the
same way as Parallel Algorithm Forward.

Parallel Algorithm Backward can be implemented using
CUDA kernel for each partition as follows:

CUDA implementation of Parallel Algorithm Backward
/* CUDA kernel */
Parallel-Backward(k)
i← blockId
task Tk,i is performed;

/* Host PC CUDA program */
for k ← 0 to P − 1 do

Call Parallel-Backward(k) with mk CUDA blocks;
end for

These conventional CUDA implementations have several
drawbacks. First, they perform many CUDA kernel calls with
large overhead; CUDA implementation of Parallel Algorithm
Backward calls CUDA kernel P times. In particular, a CUDA
kernel call can be started after the previous kernel is com-
pleted. Hence, the running time of a kernel is determined by
a CUDA kernel that terminates lastly. Further, when a CUDA
block is terminated, all data stored in the shared memory and
registers in a streaming multiprocessor are discarded. Thus,
data transfer between tasks must be done through the global
memory implemented in very slow off-chip DRAM, even if
both tasks are performed by a CUDA block with the same
blockId.

IV. SINGLE KERNEL SOFT SYNCHRONIZATION (SKSS)
TECHNIQUE FOR TASK ARRAYS

This section explains our Single Kernel Soft Synchronization
(SKSS) technique to complete all tasks in a backward task

array.
To overcome drawbacks of the conventional implementa-

tions in Section III, we start with a naive implementation such
that each row is assigned to a CUDA block, which performs
tasks in it in turn. More specifically, we use a single kernel call
in which CUDA block i performs tasks ti,0, ti,1, . . ., ti,n−1.
The details are spelled out as follows:

Wrong implementation for Parallel Soft Synchronization
Algorithm
/* CUDA Kernel */
WrongSoftSynchronization()
i← blockId;
ti,0 is performed;
for j ← 1 to n− 1 do

Wait until all tasks in T (ti,j) are completed;
ti,j is performed;

end for
/* Host PC CUDA program */
Call WrongSoftSynchronization() with m CUDA blocks;

We use an array of 1-bit flags in the global memory to write the
status of tasks. A CUDA block writes 1 in the corresponding
flag if a task is completed. The reader may think that this
implementation works correctly. However, this implementation
may stall due to the deadlock. Let r be the total number of
CUDA blocks that can be dispatched to streaming multipro-
cessors in a GPU. Also, let p be the number of rows reachable
from t0,0 in a task array. We assume that p are so large that
r < p hold, and show that WrongSoftSynchronization may
stall. After calling CUDA kernel WrongSoftSynchronization,
r CUDA blocks are running and the remaining m− r CUDA
blocks wait for termination of running CUDA blocks. Suppose
that CUDA block with blockId 0 is waiting and r CUDA
blocks are arranged to rows (excluding row 0) reachable from
t0,0. Since p rows are reachable from t0,0 and r < p, this
arrangement is possible. If t0,0 is not completed, none of r
CUDA blocks terminates. Also, if none of r CUDA blocks
terminates, CUDA block with blockId 0 never runs. Therefore,
WrongSoftSynchronization() never terminates.

The main idea of our Single Kernel Soft Synchronization
(SKSS) technique is to modify WrongSoftSynchronization()
such that it never stalls due to deadlock. It uses an integer vari-
able c initialized by 0 in the global memory as a global counter
and CUDA atomic function atomicAdd(&c,1) that exclusively
increments the value of c by 1 and returns the value of c before
increment. Suppose that m threads perform atomicAdd(&c,1).
Then, each of m threads receives 0, 1, . . ., m− 1 and no two
threads receive the same value. Thus, we can assign sequential
ID from 0 to m− 1 to m threads. We use this global counter
technique to assign CUDA blocks to tasks. The first thread in
every CUDA block performs atomicAdd(&c,1). Let i be the
return value of atomicAdd(&c,1). The corresponding CUDA
block perform tasks ti,0, ti,1, . . ., ti,n−1 in row i one by one.
Note that, before starting ti,j , it must wait until all tasks in
T (ti,j) are completed. After ti,n−1 is completed, it performs
atomicAdd(&c,1) and repeats the same procedure if it is less



than m. The details of the SKSS technique for a backward
task array are spelled out as follows:

CUDA implementation for task arrays
/* CUDA Kernel Call */
SKSS()
The first thread performs i← atomicAdd(&c, 1);
while i ≤ m− 1 do

for j ← 0 to n− 1 do
Wait until all tasks T (ti,j) are completed;
ti,j is performed;

end for
The first thread performs i← atomicAdd(&c, 1);

end while
/* Host PC CUDA program */
Call SKSS(i, j) with m CUDA blocks;

When a CUDA block performs atomicAdd(&c,1) and receives
return value i (≤ m − 1), running CUDA blocks have been
already assigned to rows from 0 to i− 1. Thus, CUDA kernel
call SKSS() can perform all tasks in a task array correctly.
Also, since a CUDA block performs all tasks in the same row
i, it is not necessary to write and read the resulting values of
ti,j−1 in the global memory to perform ti,j .

Let us see how CUDA blocks in SKSS kernel call work.
Again, let r be the total number of CUDA blocks that can
be dispatched to streaming multiprocessors at the same time.
If m ≤ r, all m CUDA blocks can be arranged streaming to
multiprocessor at the same time. Hence, SKSS can complete
all tasks. If m > r then r CUDA blocks arranged to rows
0 to r − 1 by atomicAdd function for global counter c. The
remaining m−r CUDA blocks wait for termination of running
r blocks. When one of the running CUDA blocks com-
pletes all tasks in the assigned row, the first thread performs
atomicAdd(&c,1) again, and receives return value r. Thus, this
CUDA block performs tasks in row r. When another running
CUDA block completes all tasks, it receives return value r+1
of atomicAdd(&c,1) and starts tasks in row r + 1. The same
computation is repeated until return value of atomicAdd(&c,1)
exceeds m− 1. When a running CUDA block receives return
value m, it terminates. After that, one of waiting CUDA
block is allocated to a streaming multiprocessor and the first
thread performs atomicAdd(&c,1). Since the return value is
larger than m− 1, it terminates immediately. After that, each
running CUDA block that completes tasks in the assigned
row performs atomicAdd(&c,1), receives a return value larger
than m− 1, and terminates. Also, all waiting blocks perform
atomicAdd(&c,1), receive return values larger than m−1, and
terminate. In this way, all tasks are completed. Note that r
running CUDA blocks perform m tasks and m − r waiting
CUDA blocks perform no task. Further, we can call SKSS(i, j)
with r CUDA blocks if m is too large and the exact value of r
can be estimated. This may improve the performance a little,
because no CUDA block waits and useless m− r atomicAdd
function calls are omitted.

SKSS is designed as CUDA block-wise in the sense that
each task is performed by a CUDA block. We can also

modify SKSS to warp-wise such that each task is assigned
to a warp and the first thread of a warp performs i ←
atomicAdd(&c, 1). If the return value i ≤ m − 1 then 32
threads in the warp performs tasks in the i-th row. This
implementation makes sense if each task can be done very
efficiently by a warp of 32 threads. If this is the case, we use
CUDA blocks with 64 threads each to maximize the number of
resident threads running in streaming multiprocessors, because
each streaming multiprocessor can have up to 2048 resident
threads and 32 resident CUDA blocks. If we use CUDA blocks
of 32 threads each, only 1024 resident threads can be allocated
to a streaming multiprocessor. Since more resident threads
can fully utilize the memory access bandwidth, we should
use CUDA blocks with 64 threads each. Actually, all our
implementations shown in Section V uses CUDA blocks with
64 threads each to execute warp-wise SKSS.

V. APPLICATION OF TASK ARRAYS AND EXPERIMENTAL
RESULTS

This section shows applications of task arrays and experi-
mental results. As applications of forward/fair/backward task
arrays, we use the 0-1 knapsack problem, the summed area
table computation, and the error diffusion, respectively. To
evaluate the performance, we have used NVIDIA Titan X,
which has 28 streaming multiprocessors with 128 processor
cores, 2048 resident threads, 96K-byte shared memory, and
64K 32-bit registers. The running time of sequential algorithm
using a single thread of Core i7 6700K CPU is also shown
just for reference.

A. Forward task arrays: dynamic programming for the 0-1
knapsack problem

Suppose that n items with pairs (vj , wj) of value vj and
weight wj for all i (1 ≤ i ≤ n) and an upper bound W
of the total weight are given. The goal of the 0-1 knapsack
problem [11] is to find a subset T of {1, . . . n} that

maximizes
∑
j∈T

vj subject to
∑
j∈T

wj ≤W.

In other words, the best subset of T with the total weight
less than W that maximizes the total value must be found.
The value of

∑
j∈T

wj for the optimal subset T can be obtained

efficiently by the dynamic programming technique, which uses
a 2-dimensional array V of size (W + 1) × (n + 1). In the
dynamic programming algorithm, Vi,j (0 ≤ i ≤ W and 0 ≤
j ≤ n) will store the maximum value of

∑
k∈T ′

wk with subject

to
∑
k∈T ′

wk ≤ i for the optimal subset T ′ ∈ {1, 2, . . . , j}.

The reader should have no difficulty to confirm the following
recursive formula is correct:

Vi,0 = 0

Vi,j = Vi,j−1 if i < wj

Vi,j = max(Vi,j−1, Vi−wj ,j−1 + vi) if i ≥ wj



Figure 6 shows the values of V for the knapsack problem with
input (2, 4), (2, 2), (3, 3), (4, 1).
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Fig. 6. The values of V for the 0-1 knapsack problem with input
(2, 4), (2, 2), (3, 3), (4, 1)

Suppose that the computation of each Vi,j is task ti,j . From
the computation illustrated in Figure 6, we can see that the
corresponding task array is a forward task array shown in
Figure 3.

We partition V of size (W + 1) × (n + 1) into strips and
consider that the computation of each strip is a task. We use
two types of partitions.
Single column strip V is partitioned into W+1

32 × (n + 1)
strips of size 32× 1 each.

Multiple column strip V is partitioned into W+1
32 × n+1

k
strips of size 32×k each. The value of k ≥ 2 can be any
integer.

The resulting task array of single column strip is forward
(Figure 3), while that of multiple column strip is fair (Fig-
ure 4). Thus, for single column strip, we can use CUDA
kernels Parallel-Forward to compute all values of V . Actually,
Boyer et al. [3] has presented an implementation based on
Parallel-Forward for single column strip. O’Connel et al. [4]
has presented an implementation that uses Parallel-Fair for
multiple column strip. We have implemented SKSS for single
column strip.

Table I shows the running time for solving the 0-1 knapsack
problem. The running time is evaluated for n+1 = 4096 and
W+1 = 16K, 32K, 64K, 128K, 256K, and 512K. For efficient
coalesced global memory access, transposed V is stored in
the global memory, that is, each Vi,j is stored as V [j][i] in the
global memory. Each value vi is a randomly generated number
less than 4096 and is stored as a 4-byte float. Each weight wi

is a randomly generated integer at most 4W
4096 and is stored

as a 4-byte integer. Since the average of weights is 2W
4096 , the

optimal subset T includes approximately half of items. The
running time of Parallel-Fair based algorithm shown in [4]
are evaluated for k = 2, 4, 8, 16 and 32, and selected the
minimum running time. For all values of W+1, the minimum
running time is attained when k = 4 or 8. The table also
shows the speedup ratio of our SKSS-based implementation
over the fastest implementation of Parallel-Forward [3] and
Parallel-Fair [4] for each value of W + 1. Our SKSS-based

TABLE I
THE RUNNING TIME FOR SOLVING THE 0-1 KNAPSACK PROBLEM IN

MILLISECONDS

W + 1 16K 32K 64K 128K 256K 512K
Parallel-Forward [3] 14.83 16.01 19.61 27.13 42.67 87.8

Parallel-Fair [4] 6.484 11.22 20.48 33.78 67.97 126.3
SKSS 5.037 5.515 9.315 15.14 27.24 52.37

Speedup 1.29 2.03 2.11 1.79 1.57 1.68
Sequential 62.87 109.7 261.0 605.5 1259 2584

implementation is always faster than the previously published
implementations and attains a speedup factor of 1.29-2.11.

B. Fair task arrays: summed area table of a matrix

The summed area table is a data structure used for texture-
map computations [12]. Suppose that a matrix a of size n×n
is given. The summed area table b of a is a matrix of the same
size such that

bi,j =

i∑
i′=0

j∑
j′=0

ai′,j′ .

The summed area table has many applications in the area of
image processing [13]. Using the summed area table, the sum
of elements in any rectangular area of a can be computed
efficiently in O(1) operations by the following formula:

t∑
i=s

v∑
j=u

ai,j = bt,v − bt,u − bs,v + bs,u.

Hence, the summed area table can be used for applying the
average filter for an image.

The summed area table can be obtained by computing the
row-wise prefix-sums and then computing the column-wise
prefix-sums in parallel as follows:

Parallel Summed Area Table Algorithm
for j ← 1 to n− 1 do

for i← 0 to n− 1 do in parallel
a[i][j]← a[i][j] + a[i][j − 1];

end for
end for
for i← 1 to n− 1 do

for j ← 0 to n− 1 do in parallel
a[i][j]← a[i][j] + a[i− 1][j];

end for
end for

In this algorithm, each ai,j is stored in a[i][j]. Clearly, each
a[i][j] stores the value of bi,j when this algorithm terminates.
Using this parallel algorithm, a warp of 32 threads can
compute the summed area table of size 32× 32 on the shared
memory very efficiently.

The summed area table b can also be computed by the
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Fig. 7. The values of the summed area table for a matrix with all elements
being 1

following recursive formula:

b0,0 = a0,0

bi,j = ai,j + bi,j−1 if i = 0 and j ≥ 1

bi,j = ai,j + bi−1,j if j = 0 and i ≥ 1

bi,j = ai,j + bi−1,j + bi,j−1 − bi−1,j−1 otherwise

Figure 7 shows the values of the summed area table for a
matrix with all elements being 1. From this figure, we can see
that the computation of the summed area table by the recursive
formula above represented as a fair task array illustrated in
Figure 4.

We partition the computation of the summed area table b
such that n

32 ×
n
32 groups of 32 × 32 elements each. More

specifically, each task ti,j is the computation of bi′,j′ such
that 32i ≤ i′ ≤ 32i+ 31 and 32j ≤ j′ ≤ 32j + 31. Each task
ti,j (i ≥ 1 and j ≥ 1) uses the resulting values of

• b32i−1,32j−1 computed by ti−1,j−1,
• b32i−1,32j , b32i−1,32j+1, . . ., b32i−1,32j+31 computed by
ti−1,j , and

• b32i,32j−1, b32i+1,32j−1, . . ., b32i+31,32j−1 computed by
ti,j−1.

We use a warp of 32 threads for each task. To complete task
ti,j , an assigned warp first computes the local summed area
table b′32i+k,32j+l (0 ≤ k, l ≤ 31) such that

b′32i+k,32j+l =

32i+k∑
i′=32i

32j+l∑
j′=32j

ai′,j′

using Parallel Summed Area Table Algorithm. After that, the
summed area table assigned to task ti,j can be obtained by
computing the following formula for all k and l (0 ≤ k, l ≤
31)

b32i+k,32j+l = b′32i+k,32j+l + b32i−1,32j+l

+b32i+k,32j−1 − b32i−1,32j−1.

Thus, each task ti,j computing 32× 32 elements of b can be
done efficiently by a warp of 32 threads, and both Parallel-
Fair as well as SKSS can complete all tasks. Since we have
n
32 ×

n
32 groups, CUDA kernel Parallel-Fair is called 2 n

32 − 1

TABLE II
THE RUNNING TIME FOR COMPUTING THE SUMMED AREA TABLE IN

MILLISECONDS

n 1K 2K 4K 8K 16K 32K
2R1W [6] 0.06287 0.1927 0.6579 2.511 9.763 38.23
1R1W [5] 0.2213 0.4571 1.020 2.786 9.513 31.97
hybrid [5] 0.07124 0.2123 0.6712 2.528 9.244 31.30

SKSS 0.05812 0.1494 0.4219 1.659 6.861 28.79
Speedup 1.08 1.29 1.56 1.51 1.35 1.09

Sequential 1.056 4.339 17.40 71.77 277.5 1021

times.
Nehab et al. [6] have presented a sophisticated method to

compute the summed area table in three CUDA kernel calls.
They also partition the input matrix into n

32 ×
n
32 groups of

32 × 32 elements each. In the first CUDA kernel call, the
row-wise sums R, the column-wise sums C, and the sum
S of each group are computed. The second CUDA kernel
computes the row-wise prefix-sums of R, the column-wise
prefix-sums of C, and the summed area table of the sums S
for all groups. Finally, in the third CUDA kernel, each warp
computes the (global) summed area table for the assigned
group by combining the resulting values of the second CUDA
kernel and the input elements of the assigned group. We call
this implementation 2R1W SAT, because each input element
of an input matrix is read twice, and each resulting value is
written once. This parallel algorithm is very efficient for small
matrices because the number of warps used in each kernel is
so large that each of n2

322 groups assigned a warp.
Kasagi et al. [5] have presented Parallel-Fair based imple-

mentation, which calls Parallel-Fair 2 n
32 − 1 times. We call

this implementation 1R1W SAT, because each input element
is read and write once each. They also presented a hybrid
implementation such that first k calls and the last k calls
in 2 n

32 − 1 CUDA kernel calls are replaced by 2R1W SAT
algorithm. Since earlier and later CUDA kernel calls of 1R1W
SAT use fewer warps, this hybrid implementation may run
faster than 2R1W SAT and 1R1W SAT. We can select the
value of parameter k so that the running time of this hybrid
implementation is minimized.

Table II shows the running time of 2R1W SAT, 1R1W SAT,
their hybrid, and our SKSS for computing the summed area
table for 4-byte float matrices of sizes 1K×1K, 2K×2K, . . .,
and 32K×32K. It also shows the speedup ratio of SKSS over
the fastest of 2R1W, 1R1W, and hybrid for each size. From the
table, SKSS always runs faster than the previously published
best implementation, and the speedup ratio is 1.08-1.56. The
running time of a sequential algorithm is also shown just for
reference.

C. Backward task arrays: Error diffusion and error collection

Error diffusion[14], [15] is one of the most well-known
digital halftoning algorithms to generate a binary image that
reproduces an input gray-scale image. The key idea of the error
diffusion is to distribute rounding errors to four unprocessed
neighboring pixels using coefficients shown in Figure 8. Let



7
16

1
16

5
16

3
16

7
16

1
16

5
16

3
16

(1) Error Diffusion (2) Error Collection

Fig. 8. Error diffusion and Error collection

a be a gray-scale image of size n × n such that each pixel
a[i][j] (0 ≤ i, j ≤ n − 1) takes an intensity level (i.e. a real
number) in the range [0, 1]. Error diffusion outputs a binary
image b of the same size such that each pixel b[i][j] takes
a binary value (i.e. 0 or 1). Error diffusion operation rounds
the value of a[i][j] to 0 or 1 and the resulting binary value
is stored in b[i][j]. Rounding error e (= a[i][j] − b[i][j]) is
diffused to neighboring unprocessed four pixels. The details
of error diffusion is spelled out as follows:

Error diffusion
for i← 0 to n− 1 do

for j ← 0 to n− 1 do
if a[i][j] ≤ 1

2 then r ← 0; else r ← 1;
b[i][j]← r; e← a[i][j]− r;
a[i][j + 1]← a[i][j + 1] + 7

16 · e;
a[i+ 1][j + 1]← a[i+ 1][j + 1] + 1

16 · e;
a[i+ 1][j]← a[i+ 1][j] + 5

16 · e;
a[i+ 1][j − 1]← a[i+ 1][j − 1] + 3

16 · e;
end for

end for
For simplicity, we assume that the values of a[i][j] such that
i = −1, n or j = −1, n are zero to avoid special treatment
for boundary pixels.

Error collection is a more efficient halftoning algorithm
developed by Kasagi et al. [7]. The resulting binary image
of error collection is exactly the same as that obtained by
error diffusion. Similar to error diffusion, error collection scans
input image a in raster scan order, and for each pixel in a,
rounding errors are collected from neighboring processed four
pixels using coefficients shown in Figure 8.

Error Collection
for i← 0 to n− 1 do

for j ← 0 to n− 1 do
s← a[i][j] + 7

16 · a[i][j − 1] + 1
16 · a[i− 1][j − 1]+

5
16 · a[i− 1][j] + 3

16 · a[i− 1][j + 1];
if s ≤ 1

2 then r ← 0; else r ← 1;
a[i][j]← s− r; b[i][j]← r;

end for
end for

For each pair of neighboring pixels, errors diffused/collected
are the same, and thus resulting binary images b generated
by error diffusion and error collection are identical. Error
collection performs only one write operation to a, while error
diffusion performs four write operations. Thus, error collection
is more efficient than error diffusion in terms of memory

3262

32

Fig. 9. A group of 32× 32 pixels arranged in a parallelogram

access.
Suppose that the computation of a[i][j] is a task ti,j . The

task array is backward as illustrated in Figure 5, because
ti,j uses the resulting values of ti,j−1, ti−1,j−1, ti−1,j , and
ti−1,j+1.

We group all elements in a so that tasks within a group
are represented as a fair task array and a warp of 32 threads
can complete them very efficiently. For this purpose, each
group has 32 × 32 pixels arranged in a parallelogram as
illustrated in Figure 9. Each of 32 rows has 32 pixels and
row i + 1 is slided by two pixels leftwards for row i. As
illustrated in Figure 10, we think that the computation of
error collection for each pixel in a parallelogram is a task.
We can see that the task array illustrated in Figure 10 satisfies
the condition of forward task arrays illustrated in Figure 4.
Thus, Parallel Algorithm Forward for m = 32 and n = 32
can complete all tasks in a parallelogram using a warp of 32
threads. More specifically, each thread i (0 ≤ i ≤ 31) performs
ti,0, ti,1, . . . , ti,31 in turn. Since all 32 threads in a warp work
completely synchronously, all tasks in the parallelogram can
be done correctly and efficiently.

t0,0 t0,1 t0,2 t0,3

t1,0 t1,1 t1,2 t1,3

t2,0 t2,1 t2,2 t2,3

t1,4 t1,5

t2,4 t2,5 t2,6 t2,7

Fig. 10. Tasks for pixels in the parallelogram

Next, let us consider that the computation of a parallelogram
is a task to be computed by a warp. As illustrated in Figure 11,
we partition the input image into parallelograms. In this figure,
an image of 128×128 pixels is partitioned into parallelograms
such that 128

32 = 4 strips with 32 rows have 128
32 + 2 = 6

parallelograms each. Thus, we have a task array of size 4× 6
and can draw a task graph as illustrated in the figure. For
example, the resulting values of t0,3 and t0,4 are necessary
to start t1,2, because the pixel values a in the bottom row
of parallelograms corresponding to t0,3 and t0,4 are used to
perform t1,2. Hence, the task graph has edges (t0,3, t1,2) and
(t0,4, t1,2). In general, the task graph for a n × n image has
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Fig. 11. Tasks for parallelogram in the image of size 128× 128

following edges:
• (ti,j , ti,j+1) (0 ≤ i ≤ n

32 − 1 and 0 ≤ j ≤ n
32 ),

• (ti,j , ti+1,j−1) (0 ≤ i ≤ n
32 −2 and 1 ≤ j ≤ n

32 +1), and
• (ti,j , ti+1,j−2) (0 ≤ i ≤ n

32 − 2 and 2 ≤ j ≤ n
32 + 1).

Therefore, the task array thus obtained are backward, and both
Parallel-Backward as well as SKSS can complete all tasks. Let
us evaluate the number of CUDA kernel Parallel-Backward
called in the conventional implementation. For example, a
topological ordered tasks of the task graph in Figure 11
have 15 partitions, t0,0|t0,1|t0,2|t1,0t0,3|t1,1t0,4|t1,2t0,5|
t2,0t1,3|t2,1t1,4|t2,2t1,5|t3,0t2,3|t3,1t2,4|t3,2t2,5|t3,3|t3,4|t3,5.
and each partition has at most 2 tasks. In general, the number
of partition is 4 · n32 −1 with at most ⌈ n

96⌉ tasks. Thus, CUDA
kernel Parallel-Backward is called 4 · n

32 − 1 times, and each
kernel call has at most ⌈ n

96⌉.
Kasagi et al [7] have presented a Parallel-Backward based

implementation for error collection. Table III shows the run-
ning time of the implementations using Parallel-Backward and
our SKSS. An 8-bit gray-scale image of size n × n given
in the global memory, and the binary image of the same
size is written in the global memory as 8-bit pixels. Quite
surprisingly, our SKSS is 1.61-2.11 times faster than Parallel-
Backward based implementation [7]. Since Parallel-Backward
performs too many CUDA kernel calls with few CUDA blocks,
it has large overhead for invoking CUDA kernels and resource
usage of GPU is not large enough. The running time of a
sequential algorithm is also shown for reference.

VI. CONCLUSION

We have presented Single Kernel Soft Synchronization
(SKSS) technique, which reduces the overhead of conven-
tional implementations using multiple CUDA kernel calls. The

TABLE III
THE RUNNING TIME FOR ERROR COLLECTION IN MILLISECONDS

n 1K 2K 4K 8K 16K 32K
Parallel-

Backward [7] 1.119 2.242 4.586 9.272 19.17 48.65
SKSS 0.5982 1.098 2.185 4.391 11.90 29.89

Speedup 1.87 2.04 2.10 2.11 1.61 1.63
Sequential 6.436 25.92 103.3 412.3 1649 6483

experimental results using NVIDIA Titan X show that, our
SKSS implementation is 1.29-2.11 times faster for the 0-1
knapsack problem, 1.08-1.56 times faster for the summed area
table computation, and 1.61-2.11 times faster for the error
diffusion, over the previously published best implementations.
We believe that SKSS technique is promising and can be
applied to many algorithms. In particular, many dynamic
programming based algorithms [16] can be implemented very
efficiently using our SKSS technique.
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