
Template Matching using DSP slices on the FPGA

Kaoru Hashimoto, Yasuaki Ito, Koji Nakano
Department of Information Engineering

School of Engineering, Hiroshima University
1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, JAPAN

Abstract—The main contribution of this paper is to propose
an FPGA implementation of template matching using DSP
slices. Template matching is a technique for finding small parts
of an image which match a template image. In our approach,
we use a pixel rearrangement technique that is a coarse-to-fine
technique. Unlike ordinary coarse-to-fine techniques, it always
can find a template image in a base image if the template
image is included in the base image. In our implementation,
we use multiple matching modules that compute similarity
and work in parallel. In each matching module, we efficiently
use embedded DSP slices on the Virtex-6 FPGA. We have
implemented the template matching in a Xilinx Virtex-6 FPGA
XC6VLX240T-FF1156. The implementation results show that
it can be implemented in the FPGA with 352 DSP slices, 3 block
RAMs and 455 CLBs. It runs in approximately 280MHz clock
frequency. The computing time of our FPGA implementation
is 348.88 and 3.66 times faster than that of CPU and GPU
implementations, respectively.

Keywords-Template matching, FPGA, DSP slice, Block RAM,
Pipeline, Parallel processing

I. INTRODUCTION

A Field Programmable Gate Array (FPGA) is a logic
device that can provide programmability for customers to
implement their own logic. Since FPGA chip maintains rel-
ative lower price and its programmable features, it is widely
used in those fields which need to update architecture or
functions frequently such as communication and education
areas. The most common FPGA architecture consists of
an array of logic blocks, I/O pads, and routing channels.
Furthermore, resent FPGAs have embedded DSP slices and
block RAMs that make a higher performance and broader
applications. They are widely used not only in consumer
and industrial products but also in academic research for
accelerating processor intensive algorithms [1]–[7].

The Xilinx Virtex-6 series FPGAs have DSP48E1 slices
equipped with a multiplier, adders, logic operators, etc [8].
More specifically, as illustrated in Figure 1, the DSP48E1
slice has a two-input multiplier followed by multiplexers and
a three-input adder/subtractor/accumulator. The DSP48E1
multiplier can perform multiplication of an 18-bit and a
25-bit two’s complement numbers and produce one 48-
bit two’s complement production. Programmable pipelining
of input operands, intermediate products, and accumulator
outputs enhances throughput and improves the frequency.
The DSP48E1 also has pipeline registers between operators
to reduce the delay. The Xilinx FPGA XC6VLX240T has
768 DSP48E1 slices arranged in 8 columns of 96 adjacent
DSP48E1 slices. Neighboring DSP48E1 slices are connected

directly through pipeline registers that are not show in
the figure. The block RAM in the Virtex-6 FPGA is an
embedded memory supporting synchronized read and write
operations. In Virtex-6 FPGAs, it can be configured as a
36k-bit dual-port RAMs, FIFOs, or two 18k-bit dual-port
RAMs.

Template matching is one of the techniques for detecting
a given template image from an image called a base image,
and examining whether the template exists in the base
image to be detected. It is widely used for industrial man-
ufacturing, robot navigation, geographical research, image
registration, etc [9]–[12]. Figure 2 shows an example of
template matching. Given a template image and base image,
template matching is to find a position such that a subimage
in the base image is the most similar to the template image.
There are some measurements of the similarity between a
template image and a subimage of the base image. In this
paper, we use the normalized correlation coefficient as the
similarity measure [13]. It is a normalized measurement with
the average and standard deviation of a template image and
a base image.

To reduce the computing time of template matching,
numerous methods have been developed. One of the most
famous methods is coarse-to-fine template matching [9],
[14]–[16]. It locates a low-resolution template image into
the low-resolution base image, and then refines the search
at higher resolution levels. In this algorithm, it is important
to make low-resolution images because the low-resolution
template image is not always found in the low-resolution
base image. For example, let us consider the case that a
low-resolution image is made by sampling every two pixels.
When a base image and a template image are checkered
patterns as shown in Figure 3, their low-resolution images
may be different from each other. Although the base image
includes the template image, it occurs that the template
matching may be fault. To avoid such faults by sampling,
blurred low-resolution images are made by low-pass filter
such as Gaussian filter, Laplacian filter, wavelet transform,
and so on [17]–[22]. However, it is not always possible to
find the low-resolution template image. On the other hand, to
accelerate the speed of template matching, various methods
supported by hardware acceleration with GPUs [16], [21],
[23]–[25] and FPGAs [5], [26] have been presented.

Paper [16] shows a template matching algorithm with
pixel rearrangement. This algorithm is based on the coarse-
to-fine template matching. Unlike usual coarse-to-fine al-
gorithms, however, the feature of this algorithm is that if

���
���

× �
��	
��
�����

������������ ����������
��� !"#$%&!'(&)!*)+,()- !'&)!

.$/&,-/, !��� !
0 +,#& !

Figure 1. Architecture of DSP48E1

(b) Template image

(a) Base image (c) The result of template matching

Figure 2. Example of Template Matching

Base image

Sampling
every

two pixels

Low-resolution
base image

Template image

Low-resolution
template image

Figure 3. Low-resolution images by sampling

a template image is included in a base image, this algo-
rithm always can find the template. In this algorithm, low-
resolution images by rearranging pixels of the base image are
generated. In the existing sampling-based algorithms, one
low-resolution base and template images are generated, and
template matching is performed for them. On the other hand,
this algorithm generates k2 low resolution base images by
sampling every k pixels. The sampling is performed for the
base image shifted pixel by pixel from 0 to k − 1 pixels.
Therefore, in our algorithm, given an n× n base image, k2

sampled base images whose size is n
k × n

k are generated.
More specifically, let I ′s,t (0 ≤ s, t ≤ k − 1) be k2 sampled
base images, and they are sampled from a base image such
that each sampled image is

I ′s,t(x, y) = I(kx + s, ky + t) (0 ≤ x, y ≤ n

k
− 1).

Figure 4 shows an example of sampling for k = 3. Since
the size of a base image is 6×6, k2 sampled images of size
2 × 2 are generated. The readers should have no difficulty
to confirm that the size of a base image is equal to the
total size of the k2 sampled images. Therefore, we can say
that our sampling manner is equivalent to rearrangement
of a template image. Also, a template image is reduced
by sampling every k pixels. Although the base image and
template image are checkered patterns shown in Figure 3,
at least one low-resolution image includes the same pattern
as the low-resolution base image. In other words, if the
original base image includes the original template image,
it is always to find it in one of the low-resolution images
using template matching with pixel rearrangement. After
that, we perform template matching for the low-resolution
template image and each sampled base image. Form the
results thus obtained, template matching is performed for
the corresponding positions in the original base image and
template image.

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9

1 1
1 1

2 2
2 2

3 3
3 3

4 4
4 4

5 5
5 5

6 6
6 6

7 7
7 7

8 8
8 8

9 9
9 9

Base image 9 sampled images

Figure 4. Pixel rearrangement for k = 3

The main contribution of this paper is to present a new im-
plementation of template matching. Our new idea includes:
(1) Pixel rearrangement: Our template matching circuit
is based on the idea of the pixel rearrangement method as
shown the above. The difference is that in our proposed
approach, a template image is rearranged. On the other hand,
in the original pixel rearrangement method, a base image
is rearranged instead of a template image. However, the
readers can easily find that there is no difference between

them in essence. Namely, this algorithm is a coarse-to-fine
template matching and if a template image is included in a
base image, it always can find the template, too. Sampling
a template image, the template matching is performed for
a low-resolution base image and k2 template low-resolution
images. In our implementation, k2 template matching mod-
ules are implemented and work in parallel. (2) Use of DSP
slices and block RAMs: DSP slices are used to compute the
similarity between a low-resolution base image and template
images. DSP slices basically perform multiplication and
accumulation to compute the dot-product. They are directly
connected and work pipeline fashion. Also, we avoid the
computation of square by pre-loading them into the block
RAMs as look-up-tables.

Using these ideas, we have evaluated the performance
of our template matching circuit using the Xilinx Virtex-
6 family FPGA XC6VLX240T-FF1156. The implemented
circuit can perform the template matching for n = 1024,
m = 16, and k = 4. Namely, the sizes of a base image and
a template image are 1024×1024 and 16×16, respectively.
Also, the sizes of the low-resolution base and template
images are 256 × 256 and 4 × 4, respectively. The readers
may think that the size of the template image is too small.
However, by sampling the base image and the template
image beforehand or using a part of the template image as
a template image, we can perform the template matching
for larger template images [20]. We note that our proposed
implementation performs the template matching only for the
low-resolution images. This is because in [16], the ratio
of the computing time for the low-resolution images to
the whole computing time is more than 95%. The key
to accelerate the whole computing time is to shorten the
running time for the low-resolution images. Therefore, in
our implementation, we suppose the other processes are
performed by another processor, for example, an embedded
processor in the same FPGA, a host PC connected to the
FPGA, or etc. According to the results of our evaluation, we
achieved speed-up factors of 348.88 and 3.66, respectively.

The remainder of this paper is organized as follows:
Section II introduces the similarity between two images.
In Section III, we show the template matching with pixel
rearrangement. The FPGA implementation using DSP slices
and block RAMs is shown in Section IV. Section V exhibits
the performance of our proposed algorithm on the FPGA.
Finally, Section VI offers concluding remarks.

II. THE IMAGE SIMILARITY BETWEEN A TEMPLATE
IMAGE AND A BASE IMAGE

The main purpose of this section is to define the similarity
R(T, I) for a template image T and a base image I to clarify
our work in this paper. There are many measurements of
the similarity in template matching. In this paper, we use
the normalized correlation coefficient as the similarity [13].
The normalized correlation coefficient is used to measure the
correlation between two variables. We use it to evaluate the
similarity of a template image and a base image in template
matching as follows.

First, let us define the similarity of two images A and
B of the same size. For simplicity, we assume that they
are square, that is, the size of two images is m × m. Let
A(i, j) and B(i, j) denote the intensity level of an (i, j)
pixel (0 ≤ i, j ≤ m − 1) of A and B, respectively. The
normalized correlation coefficient R(A,B) between the two
images A and B is computed by the following formula:

R(A,B) =
∑

(A(i, j) − A)(B(i, j) − B)√∑
(A(i, j) − A)

∑
(B(i, j) − B)

, (1)

where A = 1
m2

∑
A(i, j) and B = 1

m2

∑
B(i, j) are the av-

erage pixel values of A and B, respectively. The normalized
correlation coefficient R(A,B) takes a real number in the
range [−1, +1]. Larger value of the normalized correlation
coefficient implies that two images A and B are more
similar. It should be clear that the normalized correlation
coefficient R(A,B) can be computed in O(m2) time by a
sequential algorithm in an obvious way.

Suppose that a base image I and a template image T are
given. Let n × n and m × m (n > m) be the size of a
base image I and a template image T , respectively. Also,
let I(x, y) and T (x, y) denote the intensity levels of (x, y)
pixels in I and T , respectively. Let I[x, y] (0 ≤ x, y,≤
n − m) denote an m × m subimage of I that includes all
pixels I(i′, j′) (x ≤ i′ ≤ x+m−1 and y ≤ j′ ≤ y+m−1).
We define the similarity R(T, I) between a template T and
a base image I as follows:

R(T, I) = max
0≤x,y≤n−m

R(T, I[x, y]).

Clearly, R(T, I) is larger if I has a more similar subimage
to T . Also, the position (x, y) that gives the maximum value
of R(T, I[x, y]) corresponds to the most similar subimage
I[x, y] to the template image T . Let us evaluate the com-
puting time necessary to compute R(T, I) and the most
similar position R(T, I) by a sequential algorithm. For an
m×m template image T and a subimage I[x, y], the value
of R(T, I[x, y]) can be computed in O(m2) time. Hence, the
evaluation of R(T, I[x, y]) for all I[x, y] (0 ≤ x, y ≤ n−m)
takes (n − m + 1)2 × O(m2) = O(n2m2) time.

III. TEMPLATE MATCHING WITH PIXEL
REARRANGEMENT

This section describes our proposed template matching
algorithm with pixel arrangement. Given an n×n base image
I and an m × m template image T , in this algorithm, k2

low-resolution template images T ′
s,t (0 ≤ s, t ≤ k − 1) by

pixel rearrangement such that

T ′
s,t(x, y) = T (kx + s, ky + t) (0 ≤ x, y ≤ m

k
− 1),

as shown in Figure 5. The size of each T ′
s,t is m

k × m
k .

Also, a low-resolution base image I ′ is generated by
sampling every k pixels. After that, we perform template
matching for the low-resolution base image and each sam-
pled template image. Form the results, template matching
is performed for the corresponding positions in the original

T’0,0 T’1,0 T’k-1,0

T’0,1 T’1,1 T’k-1,1

T’0,k-1 T’1,k-1 T’k-1,k-1

k2 low-resolution template images

Template image T

(0,0) (1,0) (k-1,0)

(0,1) (1,1) (k-1,1)

(0,k-1) (1,k-1) (k-1,k-1)

Figure 5. Pixel rearrangement

base image. When an n × n base image and an m × m
template image are given, our proposed template matching
algorithm with pixel rearrangement works as follows.
Template Matching Algorithm with Pixel Rearrangement

Step 1. A low-resolution base image I ′ is generated by
sampling every k pixels from a base image. After
that, k2 low-resolution template images T ′

s,t (0 ≤
s, t ≤ k−1) are generated by pixel rearrangement.

Step 2. For each T ′
s,t, the similarity R(T ′

s,t, I
′) is com-

puted. If the similarity is larger than a threshold
value t, its coordinate makes a candidate position
for the next step.

Step 3. The candidate positions are transformed to corre-
sponding positions in the original base image. For
each position, the similarity between original base
image and the template image is computed.

Step 4. The position that has the largest similarity is
output as the result.

The details of each step are shown, as follows.
Step 1: In this step, a low-resolution base image I ′ is

generated by sampling every k pixels from an n × n base
image. Since the size of I ′ is n

k × n
k , it takes O(n2

k2)-time.
After that, to obtain k2 low-resolution template images T ′

s,t

(0 ≤ s, t ≤ k − 1), pixel rearrangement is performed such
that

T ′
s,t(x, y) = T (kx + s, ky + t) (0 ≤ x, y ≤ m

k
− 1),

as shown in Figure 5. The size of each T ′
s,t is m

k × m
k .

Since the above operation is just rearranging pixels in the
base image, its computing time is O(m2).

Step 2: In Step 2, template matching between the low-
resolution base image I ′ and each low-resolution template
image T ′

s,t is performed, that is computing similarities
R(T ′

s,t, I
′) (0 ≤ s, t ≤ k − 1). In the template matching,

if the similarity is larger than a certain threshold t, its
coordinate is stored as a candidate position for the next
step. Since the sizes of each low-resolution base image
and the low-resolution template image are n

k × n
k and

m
k ×m

k , O(n2m2

k4)-time is necessary to perform each template
matching. Since there are k2 low-resolution template images,
this step takes O(n2m2

k2) in total.
Step 3: In this step, the candidate positions are trans-

formed to corresponding positions in the original base im-

age. We assume that the number of the candidate positions
is l found in Step 2 and let pi = (xi, yi) (1 ≤ i ≤ l)
be the transformed candidate positions. For each pi, tem-
plate matching is performed, that is computing similarities
R(T, I[xi, yi]). It takes O(m2)-time to perform the template
matching for each pi. Therefore, the total computing time
in this step is O(lm2).

Step 4: In Step 4, the maximum similarity position in
Step 3 is output as the result. To find the maximum position
from l candidates, it takes O(l)-time.

According to the above, the total running time is
O(n2m2

k2 + lm2). If l is small, it is close to O(n2m2

k2). We
note that the above algorithm is different from the original
algorithm in [16]. In the original algorithm, a base image is
rearranged instead of a template image. On the other hand,
in our approach, a template image is rearranged. However,
the readers can easily find that there is no difference between
them in essence and the time complexity is exactly the same.

IV. FPGA IMPLEMENTATION

This section describes the architecture of our template
matching. The main idea of our architecture is to intro-
duce pixel rearrangement and utilize DSP slices and block
RAMs in Xilinx Virtex-6 FPGA. We use Xilinx Virtex-
6 family FPGA XC6VLX240T-FF1156 as the target de-
vice [8]. It consists of columns of Configurable Logic Blocks
(CLBs) each of which includes two slices, programmable
Input/Output Blocks (IOBs), DSP48E1 slices, and 36k-bit
dual-port block RAMs.

We note that our proposed implementation performs the
process in Step 2 shown in Section III. This is because
in [16], the ratio of the computing time of Step 2 to the
whole computing time is more than 95%. The key to shorten
the whole computing time is to shorten the running time
of Step 2. Therefore, in our implementation, we suppose
the other processes are performed by another processor, for
example, an embedded processor in the same FPGA, a host
PC connected to the FPGA, or etc.

The idea of our architecture is to perform the compu-
tation of R(T ′

s,t, I
′) simultaneously. Figure 6 illustrates an

outline of our architecture. Our architecture mainly consists
of line buffers, sum module, squared sum module, and
k2 template matching units. In our architecture, k2 low-
resolution template images, and threshold value are given
beforehand. After that pixels in an input low-resolution
base image in raster scan order are input for each clock
cycle one by one. For each subimage of size m

k × m
k , the

circuit performs template matching between the subimage
and k2 low-resolution template images. As illustrated in the
figure, using one template matching unit, template matching
for each low-resolution template image is performed and
they work in parallel. Also, our circuit is a fully pipelined
architecture. Given a pixel in raster scan order, the result
of the template matching for the subimage is output after
several clock cycles. In the followings, we will show the
details of each module.

Line
buffers

Base image I'

���
������

���

������� ���

��� ���
���

��� ��� ������

Threshold t
Template
image T'

k2

matching
results���

���	� ���	
 ���	��

����
	�
��
	� ��
	

����
	��
����
	

��
	��
���

���������
Figure 6. Outline of our architecture

A. Line buffers

Since pixels of the low-resolution base image are input in
raster scan order, it is necessary to supply m

k × m
k subimages

for the pixels. To active it, we use line buffers illustrated in
Figure 7. The line buffers consist of m

k − 1 FIFOs (First In
First Out). Each FIFO is composed of a block RAM and
stores n

k pixels in a row of the low-resolution base image.

FIFO

FIFO

FIFO

FIFO

...

Input
pixels

��pixels

��pixels

Figure 7. Line buffers with m
k

− 1 FIFOs

B. Sum module

Figure 8 illustrates the circuit that computes ΣI ′. Given
m
k pixels from line buffers, the total of pixel values in I ′

is computed using two adder trees and m
k shift registers for

each clock cycle.

Adder tree > > >

>

Adder tree

�������� �� ���
Figure 8. Sum module for ΣI′

C. Squared-sum module

Figure 9 illustrates the circuit that computes ΣI ′
2. In this

module, given m
k pixels from line buffers, each pixel value

is squared. To square it, we take a look-up-table (LUT)
using a block RAM. In the block RAM, the value of x
is stored in the address of x in advance. Using the block
RAM, the number of DSP slices is reduced. Using the LUT,
squared values are computed. After that, the total of them
is computed using two adder trees and m

k shift registers for
each clock cycle.

Adder tree

LUT
���

LUT
������

LUT
���

> > >

>

Adder tree

������� 	
��
Figure 9. Squared-sum module for ΣI′2

D. Template matching unit

Here, we focus on the template matching unit. This
unit performs the template matching between one of the
k2 low-resolution template image T ′

s,t and a subimage of
the low-resolution base image I ′[x, y] of size m

k × m
k .

In the followings, for simplicity, let T ′ and I ′ denote a
low-resolution template image and a subimage of the low-
resolution base image, respectively, and m′ × m′ be the
size of each, that is, m′ = m

k . As shown in Section II,
in the template matching between T ′ and I ′, the normalized
coefficient correlation in Eq. (1) is computed as

R(T ′, I ′) =

∑
(T ′ − T ′)(I ′ − I ′)√∑
(T ′ − T ′)

∑
(I ′ − I ′)

.

This can be represented as

R(T ′, I ′) =
m′2 ∑

I ′T ′ −
∑

I ′ ∑T ′√
(m′2

∑
I ′2 − (

∑
I ′)2)(m′2

∑
T ′2 − (

∑
T ′)2)

.

In the template matching, if the similarity is larger or equal
to a certain threshold value t, that is R(T ′, I ′) ≥ t, the input
two images are matched. Squaring the both sides and trans-
forming it, we have the matching conditions (m′2 ∑

I ′T ′−∑
I ′

∑
T ′)2 ≤ t2(m′2 ∑

T ′2 − (
∑

T ′)2)(m′2 ∑
I ′

2 −
(
∑

I ′)2) and (m′2 ∑
I ′T ′ −

∑
I ′

∑
T ′)2 ≥ 0. Instead of

the computation of the normalized correlation coefficient
directly, we use these inequalities without the square root
and division computations.

In the template matching module, since values m′2,
∑

T ′

and t2(m′2 ∑
T ′2−(

∑
T ′)2) in the conditions only depend

on the template image and the threshold value, they can be
computed beforehand. Therefore, before template matching
is performed, they are input to the registers in the circuit in
advance. The template matching module computes the other

terms that depend on the low-resolution base image in the
above equations and evaluates the similarity using them.

Product-sum module

Line buffers

Adder
tree >

�� ����������� �
Comparator

����	
�
�����
�������������

� � �� � �DSP48E1 DSP48E1 DSP48E1

������������� �������������
������ ����������

���
>

>

>

> >

>

>

> >

>

>

Cascaded DSP slices

� �

Figure 10. The template matching unit

Product-sum module: The product-sum module com-
putes

∑
I ′T ′ using DSP slices. The computation is similar

to the 2-dimensional convolution. As illustrated in Figure 10,
to perform the computation, the product-sums for each row-
direction are computed using m′ multipliers. In our FPGA
implementation, we use one column of m′ cascaded DSP
slices for each. Therefore, in total, m′ columns of m′ cas-
caded DSP slices, that is, m′2 multipliers are utilized. After
that the resulting product-sum is computed by summing
them with the adder tree.

Comparator module: The comparator module computes
the resulting template matching between T ′ and I ′ by eval-
uating the matching conditions in the matching conditions
using the results of the above circuit and precomputed
values. To make the circuit simple, we assume that m′ is
a power of 2. By the assumption, the products of m′ can be
computed by bit-shift operation without multipliers. In this
module, 4 multipliers are necessary to evaluate the matching
conditions.

V. PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS

Let us evaluate the performance of our architecture of
the template matching. As shown in Section IV, our pro-
posed circuit performs the template matching in Step 2 in
Section III. Therefore, in this section, we focus on Step 2
and evaluate its performance. Again, let n×n, m×m, and
k denote the sizes of a base image, a template image, and

an interval of sampling, respectively. The sizes of the low-
resolution base and template images are n

k × n
k and m

k × m
k ,

respectively. Recall that our circuit works in fully pipelined
manner. Let L denote a latency of the circuit, that is, after an
input pixel is given L clock cycles are necessary to output
the corresponding result. The total clock cycles to perform
the template matching is n2

k2 + L. In our template matching
implementation, we use k2 template matching units for k2

low-resolution template images. These k2 units work in
parallel and each of them can work in the fully pipelined
architecture. Since we use m′2 + 4 = (m

k)2 + 4 multipliers
in each template matching unit, m2 + 4k2 multipliers are
necessary in total.

We have evaluated the performance of our template
matching circuit using the Xilinx Virtex-6 family FPGA
XC6VLX240T-FF1156. Table I summarizes the evaluation
results for our template matching circuit using ISE Founda-
tion 13.1. The implemented circuit can perform the template
matching for n = 1024, m = 16, and k = 4. Namely, the
sizes of a base image and a template image are 1024×1024
and 16 × 16, respectively. Also, the sizes of the low-
resolution base and template images are 256 × 256 and
4×4, respectively. The readers may think that the size of the
template image is too small. However, by sampling the base
image and the template image beforehand or using a part
of the template image as a template image, we can perform
the template matching for larger template images [20]. The
latency L in our implemented circuit is 15 clock cycles.
Therefore, the computing time is 10242

42 +15 = 65551 clock
cycles, that is, 234.107 [µs].

Table I
PERFORMANCE EVALUATION

DSP48E1 slices (out of 768) 352
36k-bit block RAMs (out of 416) 3
CLBs (out of 18840) 455
Clock frequency [MHz] 280.004

For the purpose of estimating the speed up of our FPGA
implementation, we have also implemented a conventional
software approach of the template matching using GNU C.
We have used Intel Core i7 860 running 2.93GHz and 8GB
memory. Also, we have implemented a software approach
with the GPU support shown in [16]. We have used NVIDIA
GTX 580 with 512 processing cores running 1.54GHz
and 3GB memory. Table II shows the comparison of the
computing time between them. Our FPGA implementation
achieved 3.66 and 348.88 times speed-up over the GPU and
the conventional software implementations, respectively.

Table II
COMPARISON OF THE COMPUTING TIME

Computing time[ms] Speed-up
This work 0.234 —
GPU [16] 0.857 3.66

CPU 81.676 348.88

VI. CONCLUSION

In this paper, we have presented an FPGA architecture for
template matching using DSP slices. The template matching
algorithm in our architecture is based on the pixel rearrange-
ment method. In our circuit, multiple matching modules
that compute the similarity and work in parallel are used.
We have implemented it in the Xilinx Virtex-6 FPGA. The
experimental result shows that the computing time of our
FPGA implementation is approximately 348.88 and 3.66
times faster than that of CPU and GPU implementations,
respectively.

REFERENCES

[1] J. L. Bordim, Y. Ito, and K. Nakano, “Accelerating the CKY
parsing using FPGAs,” IEICE Transactions on Information
and Systems, vol. E86-D, no. 5, pp. 803–810, May 2003.

[2] ——, “Instance-specific solutions to accelerate the CKY pars-
ing for large context-free grammars,” International Journal on
Foundations of Computer Science, pp. 403–416, 2004.

[3] Y. Ito and K. Nakano, “Efficient exhaustive verification of
the Collatz conjecture using DSP blocks of Xilinx FPGAs,”
International Journal of Networking and Computing, vol. 1,
no. 1, pp. 19–62, 2011.

[4] Y. Ito, K. Nakano, and S. Bo, “The parallel FDFM processor
core approach for CRT-based RSA decryption,” International
Journal of Networking and Computing, vol. 2, no. 1, pp. 79–
96, 2012.

[5] K. Nakano and E. Takamichi, “An image retrieval system us-
ing FPGAs,” IEICE Transactions on Information and Systems,
vol. E86-D, no. 5, pp. 811–818, May 2003.

[6] K. Nakano and Y. Yamagishi, “Hardware n choose k counters
with applications to the partial exhaustive search,” IEICE
Trans. on Information & Systems, 2005.

[7] Y. Ago, Y. Ito, and K. Nakano, “An FPGA implementation
for neural networks with the FDFM processor core approach,”
International Journal of Parallel, Emergent and Distributed
Systems, vol. 28, no. 4, pp. 308–320, 2013.

[8] Xilinx Inc., Virtex-6 Family Overview, 2010.

[9] S. Yoshimura and T. Kanade, “Fast template matching based
on the normalized correlation by using multiresolution eigen-
images,” in Proceedings of International Conference on In-
telligent Robots and Systems, 1994, pp. 2086–2093.

[10] Y. Abe, M. Shikano, T. Fukuda, F. Arai, and Y. Tanaka,
“Vision based navigation system by variable template match-
ing for autonomous mobile robot,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 2,
1998, pp. 952–957.

[11] D. Rainsford and W. Mackaness, “Template matching in
support of generalisation of rural buildings,” in Proceedings
of International Symposium on Spatial Data Handling, 2002,
pp. 137–152.

[12] B. Zitová and J. Flusser, “Image registration methods: a
survey,” Image and vision computing, vol. 21, no. 11, pp.
977–1000, 2003.

[13] J. Rodgers and W. Nicewander, “Thirteen ways to look at the
correlation coefficient,” The American Statistician, vol. 42,
no. 1, pp. 59–66, 1988.

[14] A. Rosenfeld and G. Vanderbrug, “Coarse-fine template
matching,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. 7, no. 2, pp. 104–107, 1977.

[15] S. Tanimoto, “Template matching in pyramids,” Computer
Graphics and Image Processing, vol. 16, no. 4, pp. 356–369,
1981.

[16] A. Uchida, Y. Ito, and K. Nakano, “Fast and accurate tem-
plate matching using pixel rearrangement on the GPU,” in
Proceedings of International Conference on Networking and
Computing, 2011, pp. 153–159.

[17] E. H. Adelson and P. J. Burt, “Image data compression with
the laplacian pyramid,” in Proceedings of the Conference on
Pattern Recognition and Image Processing, 1981, pp. 218–
223.

[18] G. Bonmassar and E. L. Schwartz, “Improved cross-
correlation for template matching on the Laplacian pyramid,”
Pattern recognition letters, vol. 19, no. 8, pp. 765–770, 1998.

[19] A. C. Berg and J. Malik, “Geometric blur for template match-
ing,” in Proceedings of IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2001, pp. 607–
614.

[20] D. Keysers, T. Deselaers, and T. Breuel, “Optimal geometric
matching for patch-based object detection,” Electronic Letters
on Computer Vision and Image Analysis, vol. 6, no. 1, pp.
44–54, 2007.

[21] S. Ludwig, “Implementation of a spatio-temporal Laplacian
image pyramid on the GPU,” Ph.D. dissertation, Universität
zu Lübeck, Feburary 2008.

[22] H. Cho and T. Park, “Wavelet transform based image template
matching for automatic component inspection,” The Inter-
national Journal of Advanced Manufacturing Technology,
vol. 50, no. 9–12, pp. 1033–1039, 2010.

[23] R. Cabido, A. S. Montemayor, and Á. Sánchez, “Hardware-
accelerated template matching,” in Proceedings of Iberian
Conference on Pattern Recognition and Image Analysis, 2005,
pp. 691–698.

[24] R. F. Anderson, J. S. Kirtzic, and O. Daescu, “Applying
parallel design techniques to template matching with GPUs,”
in Proceedings of IEEE VECPAR 2010, 2010.

[25] N. A. Vandal and M. Savvides, “CUDA accelerated iris
template matching on graphics processing units (GPUs),”
in Proceedings of Fourth IEEE International Conference on
Biometrics: Theory Applications and Systems, 2010, pp. 1–7.

[26] Y. Ren, J. Zhu, X. Yang, and S. Ye, “The application of
Virtex-II Pro FPGA in high-speed image processing technol-
ogy of robot vision sensor,” Journal of Physics: Conference
Series, vol. 48, pp. 373–378, 2006.

