A hardware sorter for almost sorted sequences, with
FPGA 1mplementations

Naoaki Harada, Naoyuki Matsumoto, Koji Nakano and Yasuaki Ito
Department of Information Engineering
Hiroshima University
Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—Suppose that a sequence of sensing data with
timestamps are transferred asynchronously. Some of sensing data
may be delayed by some period of time and the sequence is not in
proper increasing order of timestamps. A sequence of timestamps
to,t1,...,tn—1 is d-sorted if ¢t; < t; holds for all pairs of
timestamps ¢; and ¢; such that j —< > d. Intuitively, a parameter
d corresponds to the maximum period of delay and we can say
that a d-sorted sequence is almost sorted if d is small. The main
contribution of this paper is to show a hardware d-sorter that
sorts a d-sorted sequence of timestamps, and to implement it in
the FPGA. Our idea for a hardware d-sorter is to use a merge-
based algorithm using FIFQOs. This hardware algorithm takes
n + 2d + log, d clock cycles using log, d comparators for a d-
sorted sequence of n timestamps. Since 2(n log d) comparisons
are necessary, it is cost optimal and attains optimal speedup.
We also present the cyclic comparison method to reduce the
number of bits in timestamps to be sorted. The experimental
results show that the FPGA implementation is 5-10 time faster
than a sequential d-sort program using a single CPU. Also, when
d = 2048, our merge-based d-sorter is 2.59 times faster than a
previously published hardware heap-based d-sorter, which takes
2n + 2d clock cycles.

Keywords—parallel sorting algorithims; hardware algorithms;
timestamp sorter; block RAMs

I. INTRODUCTION

An FPGA is a programmable logic device designed to
be configured by the customer or designer by hardware de-
scription language after manufacturing. Since an FPGA chip
maintains relative lower price and programmable features, it is
widely used in those fields which need to update architecture
or functions frequently such as image processing [1], [2].
Although the FPGA architecture is optimized for digital signal
processing, it can be used for various general purpose com-
puting [3], [4] and education [5]. Latest FPGA architectures
consist of an array of Configurable Logic Blocks (CLBs),
block RAMs, DSP slices, I/0 pads, and interconnects [6], [7].
Since they work in parallel, FPGAs can be used to accelerate
the computation.

The main purpose of this paper is to present an efficient
FPGA implementation for sorting of an almost sorted se-
quence. Suppose that a sequence of sensing data with times-
tamps are input sequentially. Sensing data can be temperature
data from thermometers, acceleration data from accelerome-
ters, location data from GPS receivers, etc. and timestamps
indicate time when they are gained. For example, sensing
data are 32-bit single precision floating numbers with 64-bit
unsigned integer representing a timestamp. If such sensing
data are obtained and transferred asynchronously, some data

may be delayed and sensing data in a sequence may not be
in increasing order of timestamps. However, if the maximum
amount of delay is guaranteed, we can say that a sequence of
sensing data is almost sorted. We use a parameter d to represent
the maximum delay as follows. A sequence tg,t1,...,tn—1
of n timestamps is d-sorted if t; < t; holds for all pairs of
timestamps ¢; and ¢; such that j —¢ > d. Intuitively, the value
of d corresponds to the maximum of delay. The sorting of a d-
sorted sequence of n timestamps can be done using a bottom-
heavy heap implementing a priority queue. A heap is a binary
tree based data structure, in which deletion of the minimum
and insertion can be done by shifting down timestamps in the
heap very efficiently [8]. Using a heap, soring of a d-sorted
sequence of n timestamps can be done in O(nlogd) time.

It is no doubt that sorting is one of the most important
tasks in computer engineering, such as database operations,
image processing, statistical methodology and so on. Hence,
many sequential and parallel sorting algorithms have been
studied in the past [9], [10]. The main purpose of this paper
is to show an efficient hardware algorithm for sorting a d-
sorted sequence. There are a lot of works that present efficient
FPGA implementations for sorting of non-restricted sequences.
For example, Marcelino et al. [11] implemented a FIFO-
based merge sorter [12] and evaluated the performance on an
FPGA. Koch and Torresen [13] presented FPGA implemen-
tations of of various parallel sorting algorithms. Mueller et
al. [14] presented implementations of sorting networks [15].
However, sorting networks are very costly and require a lot of
comparators. Marcelino et al. [16] show a simple architecture
for parallel merge sort using one merge sorting unit. Since
it repeats merging many times, the latency is quite large.
Quite recently, Matsumoto et al. have presented a very efficient
merge-based sorter [17], which minimizes the FIFO capacity
used in FIFO-based merge sorter shown in [12]. Since the
total capacity is only n + O(logn) and the capacity of n is
necessary to complete sorting, their merge-based sorter is very
close to optimal in terms of the total FIFO capacity. Since
these FPGA implementations are designed for sorting of non-
restricted sequences, it is not efficient to use them for sorting
of almost sorted sequences. In [18], the heap-based d-sort is
implemented in the FPGA. Each level of the binary heap is
implemented as a dual-port block RAM in the FPGA. Since
shifting down on the heap tree is performed on block RAMs
corresponding to adjacent levels alternatively in parallel, each
timestamp is output every two clock cycles. Thus, sorting of
a d-sorted sequence with n timestamps takes at least 2n + 2d
clock cycles.

In the merge-based d-sort, an input sequence of n times-
n

tamps is partitioned into % subsequences of d timestamps
each. Every subsequence is sorted independently, and adjacent
subsequences are merged. We show a hardware algorithm to
emulate the merge-based d-sort using FIFOs. The idea of
our hardware merge-based d-sorter is to modify a parallel
merge sorter [12] for sorting a d-sorted sequence. The resulting
hardware d-sorter sorts a d-sorted sequence of n timestamps
in n + 2d + log, d clock cycles. Since d < n must hold from
a practical point of view, the throughput our hardware merge-
based d-sorter is almost twice as large as that of the hardware
heap-based d-sorter shown in [18], which takes 2n + 2d clock

cycles.

We also show an idea to reduce the number of bits stored in
a timestamp. For example, if a C library function call clock() is
used to get the value to be stored in timestamps, they are 64-bit
unsigned integers which are incremented CLOCKS_PER_SEC
times in a second. Usually, the value of CLOCKS_PER_SEC
is 1000 or 1000000. If we use such 64-bit unsigned integers
as they are, the timestamps must have 64 bits and 64-bit
comparators are necessary to sort them. We show that if
timestamps in an input sequence are enough frequent, the
number of bits can be reduced. More specifically, we present
the cyclic comparison method that allows us to reduce the
number of bits in timestamps of such sequence. We also show
that the cyclic comparison method can be implemented by a
very simple combinational logic.

We have implemented our merge-based d-sorter with
the cyclic comparison method in Virtex-7 Family FPGA
XC7VX485T of VC707 Evaluation Kit [19]. We use dis-
tributed RAMs and block RAMs embedded in the FPGA
to implement FIFOs. For efficient implementation, distributed
RAMs are used for small FIFOs and block RAMs are used for
large FIFOs. We assume that sensing data and timestamps have
18 bits each, because the word size of block RAM is a multiple
of 18. Note that, since the cyclic comparison method is used,
18-bit timestamps may be sufficient to sort the sensing data
correctly. The implementation results show that a 2048-sorter
can be implemented using 1111 slices and 6 block RAMs
on the FPGA. Since XC7VX485T has 75900 slices and 1030
block RAMs, the used hardware resources are only 1.5% slices
and 0.58% block RAMs, respectively and the throughput is
182 x 108 sensing data per second.

We have also implemented the heap-based d-sort and the
merge-based d-sort to run in a single Core i17-4790 (3.6GHz)
CPU for reference. Since a word of CPU is 32-bit, we use
sensing data and timestamps with 16 bits each. Their perfor-
mances for 2048-sort are 17.6 x 105 and 20.1 x 10° sensing
data per second, respectively. Thus, our FPGA implementation
of the merge-based 2048-sort is 9 times faster than the CPU
implementation, although the FPGA implementation uses very
few hardware resources.

As we have mentioned, an FPGA implementation of the
heap-based d-sorter has been presented in [18]. The perfor-
mance was evaluated using a little older and smaller FPGA
XC6VLXT75T. We have also used the same FPGA for a fair
comparison. The heap-based 2048-sorter and 65536-sorter in
the FPGA runs in clock frequency 125 MHz and 100MHz,
respectively. Since it outputs sensing data in every two clock
cycles, the throughput is 62.5 x 10° and 50.0 x 10% sensing

data per second, respectively. On the other hand, our imple-
mentation of the merge-based 2048-sorter and 65536-sorter in
the FPGA runs in clock frequency 162 MHz and 95.1MHz,
respectively. Since they can output sensing data in every clock
cycle, the throughput is 162 x 10 and 95.1 x 10° sensing
data per second, respectively. Thus, our implementation for the
merge-based d-sorter achieves 1.90-2.59 times larger through-
put that the heap-based d-sorter.

This paper is organized as follows. Section II shows two
sequential algorithms for sorting a d-sorted sequences of n
timestamps, which runs O(nlogd) time and these algorithms
are time optimal. In Section III, we show a hardware merge-
based d-sorter and evaluate the performance. We introduce the
cyclic comparison method to reduce the number of bits in
timestamps in Section IV. In Section V we show our FPGA
implementation of the merge-based d-sorter and experimental
results. Section VI concludes our work.

II. SEQUENTIAL SORTING ALGORITHMS FOR A d-SORTED
SEQUENCE

The main purpose of this section is to show sequential
algorithms for sorting a d-sorted sequence of n sensing data
by timestamps. Since all algorithms presented in this paper are
comparison-based, we simply consider sorting of timestamps
and ignore sensing data.

We show two sequential algorithms, the heap-based d-sort
and the merge-based d-sort, both of which run O(n log d) time.
Although their ideas are quite natural, we show sophisticated
versions that decrease the number of memory access and
comparison operations. We also show that Q(nlogd) time is
necessary for comparison-based soring of a d-sorted sequence
of n timestamps. Thus, these sequential algorithms are optimal.

We first define a d-sorted sequence formally. Let T =
(to,t1,...,tn—1) be a sequence of n timestamps. To facil-
itate understanding, we assume that 7" is a permutation of
(0,1,...,n —1). Thus, the sequence obtained after sorting T’
is (0,1,...,n — 1). The results under this assumption can be
applied to any non-restricted sequence, because all algorithms
shown in this paper are comparison-based. A sequence 7T is
d-sorted if t; < t; holds for any ¢ and j such that j —i > d.
It should be clear that, if ¢; > t; (¢ < j) holds, then j —7 < d
must be satisfied. Figure 1 shows an example of a 4-sorted
sequence. Since t; > t4, this sequence is not a 3-sorted
sequence. Also, for any 7 and j such that j —i > 4, t; < t;
holds and thus, this sequence is a 4-sorted sequence.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

|1|4|0|2|3|5|7|9|10|6|8|13|15|11|12|14|

Fig. 1. An example of a 4-sorted sequence

We have the following basic lemma:

Lemma 1: Forall i (0 <i<n-—1),oneof t;_g41, ti—dt2,
. tipq—1 in a d-sorted sequence T = (to,t1,...,t,—1) must

be 1.

Proof: We assume that 7 equals t; such that j < i —
d or j > i+ d, and show that this assumption leads to a
contradiction. Since T is d-sorted, all 7 — d + 1 timestamps

insert delete

ho : ~ 0 hifi
shift
hy o ha o \down 0
ONONORONONONORO
Fig. 2. The operations performed for replace-min-by(4) function call

to,t1,...,tj—q are smaller than ¢; = 4 and all n — (j + d)
timestamps t;44,tj4+d+1,--.,tn—1 are larger than ¢; = 7. If
j > i+ d, it is not possible that at least j —d 4+ 1 (> 9)
timestamps smaller than i. Also, if j <1 —d, it is not possible
that at least n — (j +d) — 1 (> n — i) timestamps are larger
than 4. Thus, i — d < j < i+ d must be satisfied.]

We will show a simple sequential algorithm for sorting of
d-sorted sequence with n timestamps. We use a heap [8] with
capacity d — 1 timestamps, which can be implemented by a
full binary tree with d — 1 nodes arranged in a 1-dimensional
array of size d — 1. Let hg, hy,...,hq—2 be elements of the
I-dimensional array of size d — 1. The root hg stores the
minimum of the d timestamps. Each h; (0 < ¢ < % -1
has two children hg;41 and ho;2, and satisfies the bottom-
heavy heap property such that the value stored in h; is smaller
than those stored in both children ho;y; and ho;yo. We use
the following function calls handling a heap:
make-heap(tp, t1,...,tq—2): Create a heap storing times-
tamps tg,t1,...,tq—2.
replace-min-by(¢;) Compare the ¢; and the minimum times-
tamp in the heap. If ¢; is smaller, ¢; is returned. Otherwise, the
minimum timestamp in the heap is replaced by ¢; and is output.
delete-min(): Delete and returns the minimum timestamp in
the heap.

After each of these calls, timestamps stored in heaps are shifted
down to satisfy the bottom-heavy heap property, as illustrated
in Figure 2.

Using these function calls for a heap, a d-sorted sequence
with n timestamps can be sorted as follows:

[The heap-based d-sort]
make-heap(to, t1,-..,tq—2);
fori<d—1ton—1do
output(replace-min-by(¢;));
fori < 0tod—2do
output(delete-min());

We will show that this algorithm outputs 0,1,...,n—1 in turn
correctly. After make-heap(tg, t1,...,t4—2) is executed, d — 1
timestamps are stored in a heap. From Lemma 1, 0 must be
one of ¢g,t1,...,tq—1. Thus, either the minimum value stored
in the heap or t;_; is 0, and replace-min-by(t;_1) returns
0. After that, replace-min-by(t;) returns 1 because one of
to,t1,...,tq 1s 1 from Lemma 1. Figure 2 illustrates the opera-
tions performed for replace-min-by(2) after make-heap(1,4,0)
is executed. The minimum value O stored in the root hg is
replaced by 2 and is output. After that, 2 “shifts down” in the
heap to satisfy the bottom-heavy heap property. In general, it
should be clear that replace-min-by(¢;) (d —1 < i <n —1)
returns ¢ — (d — 1). After replace-min-by(t,,—1) is executed,
the heap stores timestamps n —d + 1,n —d+2,...,n — 1.
Thus, delete-min() outputs these timestamps one by one, and

the heap-based d-sort performs sorting correctly.

Next, we will evaluate the running time of the heap-
based d-sort. First, make-heap(to, t1,...,tq—2) is exactly the
same as the first stage of the well-known heap sort. The
heap of d — 1 nodes can be created in O(d) time by re-
peatedly merging heaps [8]. Each function call replace-min-
by(t;) and delete-min() and can be done in O(logd) time by
shifting down operation of ¢;. Hence, the total running time is
O(d) + (n—d+1)-O(logd) = O(nlogd), and we have,

Lemma 2: The heap-based d-sort sorts a d-sorted sequence
with n timestamps in O(nlogd) time.

We will show the merge-based sorting for a d-sorted
sequence. Suppose that T is partitioned into % subsequences
To, Th, ..., Tn with d timestamps each. Let sort(7;) be a
procedure that sorts 7; by any sorting algorithm. We simply
use merge sort [8] for sort(7;). Also, let merge(T;, T;4+1) be a
procedure that merges two sorted sequences 7; and T;,; and
obtains one sorted sequence of 2d timestamps. The following

algorithm sorts a d-sorted sequence:

[The merge-based d-sort]

fori<—0t0%—1d0
sort(T;);
forti<+0to 2 —2do

d
merge(T;, Ti11);

The merge-based d-sort sorts each subsequence independently.
After that, adjacent two blocks are merged in turn. Figure 3
illustrates data movement by the merge-based d-sort for a 4-
sorted sequence with 16 timestamps. After every subsequence
is sorted, each pair of adjacent subsequences are merged from
left to right.

To Ty T T3

|1|4|0|2|3|5|7|9|10|6|8|13|15|11|12|14|

* sort(To) * sort(T4) * sort(T2)

*sort(T3)

|0|1|2|4|3|5|7|9|6|8|10|13|11|12|14|15|

N (T, T1)
[ofrf2[sf«]s]7]°]
|4|5|6|7|8|9|10|13|

~

|8|9|10|11

merge(T,T>)

merge(T>, T3)

12|13|14|15|

Fig. 3. The merge-based sorting for a 4-sorted sequence of 16 timestamps

Since T is d-sorted sequence and each subsequence has
d timestamps, for all 7 and j such that j —i > 2, T} < T}
holds, that is, all timestamps in 7; are smaller than those of
T;. Thus, To UT; includes all timestamps 0, 1, ..., d—1, and
after merge(Ty, T1) is executed, Ty stores 0, 1, ..., d — 1. In
general, after merge(7;,7T;41) (0 <:i < % —2) is executed, T;
stores di,di+1,...,di+d — 1.

Let us evaluate the running time of the merge-based
d-sort. We use merge sort for each sort(7;), which takes

O(dlogd) time. Since we have % blocks, the first for-loop
takes O(nlogd) time. After that, each merge(T;, T;+1) can be
done in O(d) time. More specifically, we compare the smallest
timestamps in 7; and T;;; and delete/output the smaller of
the smallest timestamps. By repeating this operation 2d times,
merge(7;, T;+1) can be done in O(d) time. Thus, the second
for-loop can be done in O(n) time, and we have,

Lemma 3: The merge-based d-sort sorts a d-sorted se-
quence with n timestamps in O(nlogd) time.

We will prove that both the heap-based d-sorting
(Lemma 2) and the merge-based d-sorting (Lemma 3) are
time optimal. It is well known that sorting of m data needs
at least Q(mlogm) comparisons [8]. We use this fact to
prove Q(nlogd)-time lower bound. Suppose that a sequence
T with n timestamps is partitioned into % subsequences
To,T1,...,Tn 1 with d timestamps each. We say that T is d-
block-sorted it all elements in T are smaller than those of T}
foralli (0 <i< % —2). Clearly, a d-block-sorted sequence is
also a d-sorted sequence, because for any two timestamps t;
and ¢; satisfying j — ¢ > d, they are in different subsequences
and ¢; < t; holds. Hence, sorting of a d-block-sorted sequence
is not harder than that of a d-sorted sequence and so the lower
bound of sorting of a d-block-sorted sequence is also that of
a d-sorted sequence. To sort a d-block-sorted sequence, each
subsequence must be sorted. Since each subsequence has d
timestamps, at least Q(dlogd) time is necessary. Because a
d-block-sorted sequence of n timestamps has 7 subsequences,
we have,

Lemma 4: At least Q(nlogd) time is necessary to sort a
d-sorted sequence with n timestamps.

From this lemma, the heap-based d-sort and the merge-based
d-sort are time optimal.

III. A HARDWARE MERGE-BASED d-SORTER

The main purpose of this section is to show a FIFO-based
parallel merge sorter for a d-sorted sequence.

Our architecture uses a parallel merge sorter [12] and a
sliding merger. It basically emulates the merge-based d-sort
shown for Lemma 3. A parallel merge sorter performs sort(7;)
and a sliding merger emulates merge(7;, T4 1).

We first show a parallel merge sorter briefly. A d-merge-
sorter, which is a parallel merge sorter with parameter d,
performs sort(T;) for all ¢ in a pipeline fashion, where every
T; has d timestamps. Figure 4 illustrates the architecture of an
8-merge-sorter. In general, a d-merge-sorter consists of logd
mergers, 1-merger, 2-merger, 4-merger, . . ., %—merger.

A k-merger (k =1,2,4,8,...) has one input port and one
output port and receives one timestamp from the input port and
outputs one timestamp to the output port in every clock cycle.
The input sequence of timestamps is partitioned into subse-
quences of k£ timestamps each and each subsequence is sorted.
More specifically, an input sequence T = (to,t1,...,tn—1)
are partitioned into 7: subsequences 7y, 71, ..., T2 _; and each
T; = <t7;.k, Licktlye - ;ti~k+k—1> O<i<L %—1) is sorted. A k-
merger has two FIFOs A and B that can store k+1 timestamps
and k timestamps, respectively, as illustrated in Figure 4.
Initially, both FIFOs are empty. First, all k£ timestamps in

Ty are enqueued in FIFO A one by one. After that, all &
timestamps in 77 are enqueued in FIFO B. Similarly, T5 is
enqueued in FIFO A and then T3 is enqueued in FIFO B.
This enqueue procedure is repeated until all timestamps in T’
are enqueued in FIFOs. At the same time, dequeue operation is
performed. After the first timestamp t; in 73 is enqueued, we
start dequeuing one of FIFOs A and B. Two timestamps in the
heads of FIFOs A and B are compared and the smaller one is
dequeued and sent to the output port. If FIFO B is empty, then
FIFO A is dequeued. Also, if timestamps stored in the heads of
two FIFOs are originated from different pairs, that from earlier
pair is dequeued. During both enqueue and dequeue operations
are performed, two FIFOs store totally k 4+ 1 timestamps. It
should be clear that FIFOs A and B may store k + 1 and
k timestamps, respectively. For example, if all timestamps in
Ty are larger than those of 77, then FIFO A will store all &
timestamps in Ty and the first timestamp in 75. Thus, Ty stores
k+1 timestamps. Also, if all timestamps in 7g are smaller than
those of 77, then FIFO B will store k timestamps.

Since k-merger starts outputting timestamps after k + 1
timestamps are input, the latency is k+ 1. Thus, the latency of
d-merge-sorter is (1+1)+ (24 1)+ (4+1)+---+ (¢ +1) =
d+logd — 1, and we have,

Lemma 5: The d-merge-sorter performs sort(7;) (i > 0) of
the merge-based d-sort in latency d + logd — 1.

From Figure 4, we can confirm that the latency of an 8-sorter
is 10.

Next, we will show a d-sliding-merger, which performs
merge(T;, T;41) in the merge-based d-sort. A d-sliding-merger
is very similar to a d-merger. Intuitively, if we use a k-merger
for k = d, then merge(Ty, T1), merge(Ts, Ts), merge(Ty, T5),

. are performed in turn. On the other hand, a d-sliding-
merger performs merge(7y, 11), merge(T, T5), merge(Ts, T3),
. in turn.

Figure 5 illustrates an architecture of an 8-sliding-merger.
A d-sliding-merger has two FIFOs A and B with capacity d
each. Similarly to a d-merger, all timestamps are enqueued in
FIFOs A and B in turn. More specifically, timestamps in T5;
(i > 0) are enqueued in FIFO A and those in T5;41 (i >
0) are eqnueued in FIFO B. After the first timestamp ¢4 in
T, is enqueued, dequeue operation is started. In the dequeue
operation, the heads of A and B are compared and smaller
one is dequeued and output. Figure 5 also illustrates the timing
chart of an 8-sliding-merger.

The reader may think that FIFO A may store d + 1
timestamps. However, it is sufficient for FIFO A to store d
timestamps. Since the timestamps are d-sorted, the maximum
timestamp in Tb;41 is larger than all timestamps in Tb;.
Thus, while timestamps in T5; o is enqueued in FIFO A and
those in Th; in FIFO A is dequeued, FIFO B stores at least
one timestamp in 75;4; and cannot be empty. Since FIFOs
A and B stores d + 1 timestamps totally, FIFO A never
stores d + 1 timestamps. Hence, a d-sliding-merger emulates
merge(7;, T;+1) for all 4 correctly, and we have,

Lemma 6: A d-sliding-merger performs merge(7;, T;11)
(i > 0) of the merge-based d-sort in latency d + 1.

Lemmas 5 and 6 combined, we have,

Input
11

1-merger 2-merger

Output

Tatency

Fig. 4. The architecture of an 8-merge-sorter and the timing chart

fodebeuebed0B00s
a
i8oaafanifoalies
o V1 Y2Vals)

4-merger

34)Y5)Y7)9 Yo Y8 Y10 Y11 Y12 Y13 Y14 Y15

A
Input |9|7|5|4|3|2|1 Output
o L[] [’
B
Input :
DODERDE
Outputé
: 01 Y2Y3 Y4) 5)Y6)7)8)9 Y1011 Y12 Y13 Y14 Y15

Fig. 5. The architecture of an 8-sliding-merger and the timing chart

Theorem 7: Sorting of a d-sorted sequence can be done in
latency 2d + log, d.

Thus, if a d-sorted sequence has n time stamps, sorting can be
done in n + 2d + log, d clock cycles. Since we use log, d + 1
comparators, the total cost is (n+2d+logd) x (logyd+1) =
O(nlogd). Hence, from Lemma 4, our merge-based d-sorter
is optimal.

In [17], it has been shown that the total capacity of FIFOs
used in k-mergers can be reduced by using more than two
FIFOs with smaller capacity. We can use the same technique
for d-sliding-merger. Two FIFOs of d-sliding-merger stores at
most d+ 1 timestamps, while their total capacity is 2d. We can
reduce the total capacity by using more than two FIFOs with
smaller capacity. Figure 6 illustrates an 8-sliding-merger using
three FIFOs, which is simulating an 8-sliding-merger using
two FIFOs illustrated in two FIFOs shown in Figure 5. The
middle FIFO of the three may be used as FIFO A or FIFO B.
In the figure, it is used as FIFO A. The 8-sliding-merger in
Figure 5 uses two FIFOs with total capacity 16, while that in
Figure 6 uses three FIFOs with total capacity 12. In general,
if we use FIFOs with capacity M each, a d-sliding-merger
can be implemented using % + 1 FIFOs with total capacity
(L+1)-M=d+ M.

IV. THE CYCLIC COMPARISON METHOD FOR A d-SORTER

Suppose that sensing data with timestamps are given to the
FPGA. If we use 64-bit unsigned integers returned by function
call clock() as the values of timestamps, the FPGA needs to
sort a sequence with 64-bit timestamps. The main purpose of
this section is to show that we can remove the most significant

Fig. 6. 8-sliding-merger using three FIFOs

bits and use the least significant bits for d-sort if some practical
condition that we will show later is satisfied.

Suppose that the low-order 16 bits in 64 bits are used as
timestamps. For example, for two 64-bit numbers

a = 12345678 9ABC FFFF
b = 123456789ABD 0001

in hexadecimal, ¢ < b holds. However, if the lower-order
16 bits ¢’ = FFFF and ' = 0001 of them are compared,
a’ > b’ holds and the comparison results do not match. Thus,
we introduce the cyclic comparison, which returns the correct
comparison result if the difference of two numbers a and b are
not large.

Suppose that for two distinct numbers a and b, let a’ and
b be the low-order k bits of them, respectively. We assume
that the difference of a and b is so small that |a — b| < 2+~!
holds. Let 6 = a — b and ¢’ = a’ — V'. Clearly, one of (A)
§=106,(B) 6 =46 —2F, or (C) § = &' + 2* holds. Since both
|6] < 2F=1 and |6’| < 2%, we can determine if (A), (B), or (C)
holds as follows:

CASE 1: If § < =21 then (C) and ¢ > b

CASE 2: If =21 < §’ < 0 then (A) and @ < b holds.
CASE 3: If 0 < ¢ < 2F=1 then (A) and a > b holds.
CASE 4: 1If 2*=1 < §’ then (B) and a < b holds.

Note that, from |§| # 251, it is not possible that |§'| = 2¢~1.
Suppose that 6’ = o’ — b’ is computed using a k-bit subtractor
and the resulting value is obtained as k-bit sg_1S5k_2 - So.
That is, this k-bit integer is the low-order k-bit of §’. The
reader should have no difficulty to confirm that, if CASE 1
or CASE 3, then s;_1 = 0. Let £ = 4 and confirm this fact
using an example. If ¢/ = 0101(= 5) and b’ = 1110(= 14)
(CASE 1) then ¢’ = —9 and s = 0111. If ' = 0101(= 5) and
b = 0010(= 2) (CASE 3) then §' = 3 and s = 0011. Also, if
CASE 2 or CASE 4, then s;_; = 1. Thus, we have,

Lemma 8: The equation a > b holds if and only if s;,_1 =
0.

From Lemma 8, we use value of s,_; to decide if a > b.
Hence, if |[a—b| < 28~ holds for all two timestamps compared
in a sorting algorithm whose original values are a and b, the
comparison of the low-order k-bits are sufficient sort data with
such timestamps.

We first show that the heap-based d-sort never compares
two timestamps with position difference more than 2d. To
confirm this fact, we assume that T = (tg,t1,...,tn—1) tO
be sorted is a permutation of (0,1,...,n — 1) as before, and
show that ¢ and j such that |[i—j| > 2d are never compared. For
a fixed ¢, let 7’ be an index such that ¢;; = ¢. From Lemma 1,
1 > 1 — d holds. When replace-min-by(¢;) is performed, all
values stored in the heap is larger than ¢’ — d from Lemma 1.
From ¢ — d > i — 2d, replace-min-by(¢;) never performs
comparison of ¢ and i —2d. Hence, ¢ and j such that |i—j| > 2d
are never compared.

Next, we will show that the merge-based d-sort never
compare two timestamps with position difference 3d or more.
For two timestamps 4 and j such that j — ¢ > 3d, let ¢’ and
j' be indexes such that ¢;; = ¢ and t;; = j. From Lemma 1,
t' <i+dand j' > j—d. From j—i > 3d, we have ;' —i' > d.
Hence, t;, and t; are in different subsequence in the merge-
based d-sort, and they are never compared. Thus, we have,

Lemma 9: The heap-based d-sort and the merge-based d-
sort never compare two timestamps with position difference
more than 2d and 3d, respectively.

Let 77 = (ty,t), ..., t,_;) be the sorted sequence of T". Sup-
pose that T is sorted using the low-order k bits of timestamps.
From this lemma, 7" can be sorted correctly by the merge-based

d-sort if t;, 5, —t; < 2~ for all i.

V. THE FPGA IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The main purpose of this section is to show the running
time and the performance of sorting for a d-sorted sequence.

For reference, we have implemented both sequential merge-
based soring and heap-based sorting and evaluated the running
time on an Intel Core i7-4790 (3.6GHz) processor. Although
Intel Core i7 processor has multiple processor cores running
in parallel, our implementations are sequential and do not
use multiple cores. However, we can say that we can not

expect 4 times or more acceleration ratio over our sequential
implementation using a single core if we use 4 processor cores.
For CPU implementation, we simply use 32-bit timestamps.
Clearly, sorting for 32-bit timestamps can be applied as it is
to sort of 16-bit sensing data with 16-bit timestamps.

We use a Virtex7-family FPGA XC7VX485T. It has 1030
block RAMs, which can be used as ring buffers for FIFOs. A
single block RAM can be configured as one 36kbit block RAM
or two 18kbit Block RAMs [7]. The standard data width of
block RAMs is 36 bits. Hence, we assume that the input is a
sequence of 18-bit sensing data with 18-bit timestamps. Thus,
a 36kbit block RAM and a 18kbit block RAM can be used to
implement FIFOs with 1024 and 512 timestamps, respectively.
Also, larger FIFOs can be implemented using multiple block
RAMs in an obvious way. Virtex-7 FPGAs also have a lot of
Configurable Logic Blocks (CLBs), each of which has two
slices [6]. For example, XC7VX485T has 37950 CLBs or
75900 slices. Each slice has four L.ook-Up Tables (LUTs), each
of which is a 26 = 64-bit memory. Multiple LUTs consistitute
a distributed RAM, which is used to implement a FIFO of
size less than 512. Also, in our implementation of our merge-
based d-srter, 18-bit timestamps are compared by the cyclic
comparison.

We have evaluated two types of implementations for each
k-merger and each k-sliding-merger:
2-FIFO: Two FIFOs are used for all k-mergers and k-
sliding-mergers. More specifically, two distributed RAMs are
used for k up to 256, Two 18kbit RAMs (512 x 36-bit each)
are used for £k = 512 and % 36kbit RAMs (1024 x 36-bit
each) are used for k > 1024.
Optimal-FIFO: Similarly to the 2-FIFO implementation, we
use block RAMs for k > 512. Further, we select the number
of FIFOs used in each k-merger and each k-sliding-merger
such that the hardware resource usage is minimized. For
example, 8192-sliding-merger uses 9 FIFOs, each of which
is implemented using a 36kbit block RAM. Note that in the
2-FIFO implementation, eight 36kbit block RAMs are used for
each FIFO. Thus, sixteen 36kbit block RAMs are necessary to
implement a 8192-sliding-merger by 2-FIFO.

Table I shows optimal selections of the number of FIFOs
for each k. Merge-based d-sorter by Optimal-FIFO uses 1-
merger, 2-merger, ..., g-merger, and d-sliding-merger with
parameters shown in Table 1.

Table II shows the performance for d-sort using Core i7
CPU and Virtex 7 FPGA. We have used d-sorted sequence of
64M (= 225) data for d = 32 to 65536. The performance of the
merge-based d-sorting and the heap-based d-sorting on Intel
Core i7 processor are evaluated by the throughput computed
from the running time. We can see that the performance of two
sequential sorting algorithms are almost the same. The merge-
based d-sorting is slightly higher throughput for large d. This
may be due to memory access locality. Access to timestamps
in the FIFOs of the merge-based d-sorting is sequential. On
the other hand, the access to timestamps in the heap of the
heap-based d-sorting is stride and such stride access degrades
memory cache performance.

Next, we compare the heap-based d-sorter [18] and our
merge-based d-sorter. Table III shows the implementation
results. Since the implementation results for the heap-based d-

TABLE L

THE OPTIMAL SELECTION OF THE NUMBER OF FIFOS

k 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
k-merger | memory type distributed RAMs 18kbit block RAMs 36kbit block RAMs
FIFOs 2 3 2 2 2 2 2 2 2 2 2 3 5 9 17 33 65
k-sliding memory type distributed RAMs 18kbit block RAMs 36kbit block RAMs
-merger FIFOs - - - - - 2 2 2 2 2 2 3 5 9 17 33 65
TABLE IL THE PERFORMANCE FOR d-SORTING FOR CORE 17-4790 CPU AND VIRTEX 7 FPGA IMPLEMENTATIONS

d 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

Heap-based d-sorting 10° data/sec 42.0 348 29.5 25.2 21.9 19.4 17.6 16.2 14.9 13.9 12.9 11.9

Merge-based d-sorting 10° data/sec 40.8 342 30.1 26.7 24.1 22.0 20.1 18.6 17.3 16.2 15.1 14.3

Merge-based 10° data/sec 222 242 234 219 207 193 183 184 171 144 131 112

d-sorter slices (out of 75900) 358 491 604 784 889 957 1081 1219 1336 1557 1676 2035

FPGA block RAMs (out of 1030) 0 0 0 0 1 3 7 15 31 63 127 255

(2-FIFO) clock (MHz) 222 242 234 219 207 193 183 184 171 144 131 112

Merge-based 10° data/sec 232 241 247 224 207 188 182 166 171 164 147 132

d-sorter slices (out of 75900) 336 467 632 771 865 973 1111 1441 1963 2679 4136 6984

FPGA block RAMs (out of 1030) 0 0 0 0 1 3 6 11 20 37 70 135

(Optimal-FIFO) clock (MHz) 232 241 247 224 207 188 182 166 171 164 147 132
sorter assumed Virtex6-Family FPGA XC6VLX75T, we have [3]1 S.D.Kohale and R. W. Jasutkar, “Power optimization of GCD processor
also used the same FPGA for a fair comparison. When d = using low power Spartan 6 FPGA family,” International Journal of
2048. our merge—based d-sorter uses less hardware resources Conceptions on Electronics and Communication Engineering, vol. 2,

T X no. 1, pp. 1-6, June 2014.
and attains higher clock performance than the heap-based d- . » . .

‘ b th trol logi £ b d ter i [4] J. L. Bordim, Y. Ito, and K. Nakano, “Instance-specific solutions to
Sf)l‘ €T, ecaus.e .e control fogic ol our merge-based Sorter 1s accelerate the CKY parsing for large context-free grammars,” Interna-
simpler and distributed RAMs and block RAMs are used more tional Journal on Foundations of Computer Science, vol. 15, no. 2, pp.
efficiently. Note that the heap-based d-sorter needs two clocks 403-416, 2004.
to output each data, while our merge—based d-sorter can output [5] K. Nakano and Y. Ito, “Processor, assembler, and compiler design
a timestamp in every clock cycle. Thus, the throughput of our education using an FPGA,” in Proc. of International Conference on
merge-based d-sorter is 612625 ~ 2.59 times larger. On the other Parallel and Distributed Systems, Dec. 2008, pp. 723-728.
hand, when d = 65536. our merge—based d-sorter needs more [6] Xilinx Inc., 7 Series FPGAs Configurable Logic Block User Guide,

i ’ Nov. 2014,
hardware resources because our merge-based d-sorter needs - 7 Sories FPGASs M. % User Guide. Nov. 2014
many slices to control a lot of FIFOs. The throughput or merge- o ’ o eres o § Memory esozgces ser e, OV;l o
based d-sorter is 95.1 ~ 1.90 times larger. Also, the heap—based 8] T. H.. ormen, C. E. Leiserson, and R. L. Rivest, Introduction to
d . h) 5([).108] 4 " C th i . Algorithms. MIT Press, 1990.
-sorter nim n T 1 mparison
}?01 er show based C(l)es ot suppo .eCyC ¢ comparnson, [91 D. E. Knuth, The Art of Computer Programming. Vol.3: Sorting and
while our merge-based d-sorter supports it. Searching. Addison-Wesley, 1973.
TABLE III THE PERFORMANCE OF d-SORTERS ON XC6VLX75T [10] S. G. AKl, Parallel Sorting Algorithms. Academic Press Inc., 1990.
FPGA [11] R. Marcelino, H. Neto, and J. M. Cardoso, “Sorting units for FPGA-
based embedded systems,” Distributed Embedded Systems: Design,
= d 3 26042 655536 Middleware and Resources, vol. 271, pp. 11-22, 2008.
Heap- 10 ta/s 2. 0.0 . . .
f;rs’or?:re sTices (outaof s1e1c640) 1860 2484 [12] S. Todd, “Algorithm and hardware for a merge sort using multiple
FPGA [18] block RAMS (out of 156) 27 104 processors,” IBM Journal of Research and Development, vol. 22, no. 5,
clock (MHz) 125 100 pp. 509-517, Sept. 1978.
Merge-based 107 data/sec 162 95.1 [13] D.Koch and J. Torresen, “FPGASort: A high performance sorting archi-
d-sorter slices (out of 11640) 1229 816l tecture exploiting run-time reconfiguration on FPGAs for large problem
© tiFr: (l}?IF 0) block RlAMkS (&’thZ‘))f 156) 1 Gg 9153 : sorting,” in Proc. of International Symposium on Field Programmable
pima- coe : Gate Arrays, 2011, pp. 45-54.
[14] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,”
VI. CONCLUSION The International Journal on Very Large Data Bases, vol. 21, no. 1,
pp. 1-23, Feb. 2012.

In this paper, we have presented the merge-based d-sorter, [15] K. Batcher, “Sorting networks and their applications,” in in Proceedings
which can sort a d-sorted sequence of n [imes[amps in n 4+ of the AFIPS Spring Joint Computer Conference 32, 1968, pp. 307-314.
2d+log, d clock cycles. It is about twice as fast as previously =~ [16] R. Marcelino, H. C. Neto, and J. M. P. Cardoso, “Unbalanced FIFO
published hardware heap-based d-sorter, which takes 2n + 2d sorting for FPGA-based systems,” in Proc. of International Conference

X ’ X ystems . L 431 — 434,

clock cycles. Also, the experimental results on a Virtex7 FPGA on Electronics, Circuits, and Systems, Dec“200.9, pp. 431 — 434
show that our merge-based d-sorter is 5-10 time faster than a [!7]1 N. Matsumoto, K. Nakano, and Y. Tto, "Optimal parallel hardware
al . inol 192 R k-sorter and top k-sorter, with FPGA implementations,” in Proc. of
sequentia d-sort Pf‘?gmm usmg.a sigle CPU and 1.9-2.6 times International Symposium on Parallel and Distributed Computing, June

faster than the previously published heap-based d-sorter. 2015, pp. 138-147.
[18] W. M. Zabototny, “Dual port memory based heapsort implementation
REFERENCES for FPGA,” in Proc. SPIE, Photonics Applications in Astronomy,
Communications, Industry, and High-Energy Physics Experiments, Oct.
[1] K. Nakano and E. Takamichi, “An image retrieval system using FPGAs,” 2011.

IEICE Transactions on Information and Systems, vol. E86-D, no. 5, pp. [19] Xilinx Inc., VC707 Evaluation Board for the Virtex-7 FPGA User

811-818, May 2003.

K. Nakano and Y. Yamagishi, “Hardware n choose k counters with ap-
plications to the partial exhaustive search,” IEICE Trans. on Information
& Systems, vol. E88-D, no. 7, pp. 1350-1359, 2005.

(2]

Guide, 2014.

