Accelerating the Dynamic Programming for the
Optimal Polygon Triangulation on the GPU

Kazufumi Nishida, Koji Nakano, and Yasuaki Ito

Department of Information Engineering, Hiroshima University,
Kagamiyama 1-4-1, Higashi Hiroshima 739-8527, Japan
{nishida,nakano,yasuaki}@cs.hiroshima-u.ac. jp

Abstract. Modern GPUs (Graphics Processing Units) can be used for
general purpose parallel computation. Users can develop parallel pro-
grams running on GPUs using programming architecture called CUDA
(Compute Unified Device Architecture). The optimal polygon triangula-
tion problem for a convex polygon is an optimization problem to find a
triangulation with minimum total weight. It is known that this problem
can be solved using the dynamic programming technique in O(n®) time
using a work space of size O(n?). The main contribution of this paper is
to present an efficient parallel implementation of this O(n®)-time algo-
rithm on the GPU. In our implementation, we have used two new ideas
to accelerate the dynamic programming. The first idea (granularity ad-
justment) is to partition the dynamic programming algorithm into many
sequential kernel calls of CUDA, and to select the best size and number
of blocks and threads for each kernel call. The second idea (sliding and
mirroring arrangements) is to arrange the interim data for coalesced ac-
cess of the global memory in the GPU to minimize the memory access
overhead. Our implementation using these two ideas solves the optimal
polygon triangulation problem for a convex 16384-gon in 69.1 seconds on
the NVIDIA GeForce GTX 580, while a conventional CPU implementa-
tion runs in 17105.5 seconds. Thus, our GPU implementation attains a
speedup factor of 247.5.

Keywords: Dynamic programming, parallel algorithms, coalesced memory ac-
cess, GPUGPU, CUDA

1 Introduction

The GPU (Graphical Processing Unit), is a specialized circuit designed to ac-
celerate computation for building and manipulating images [4,5,7,13]. Latest
GPUs are designed for general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence, GPUs have recently
attracted the attention of many application developers [4,9]. NVIDIA provides
a parallel computing architecture called CUDA (Compute Unified Device Archi-
tecture) [10], the computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel computational

2 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

elements in NVIDIA GPUs. In many cases, GPUs are more efficient than mul-
ticore processors [8], since they have hundreds of processor cores running in
parallel.

The dynamic programming is an important algorithmic technique to find an
optimal solution of a problem over an exponential number of solution candi-
dates [2]. A naive solution for such problem needs exponential time. The key
idea behind dynamic programming is to:

— partition a problem into subproblems,
— solve the subproblems independently, and
— combine the solution of the subproblems

to reach an overall solution. The dynamic programming enables us to solve such
problems in polynomial time. For example, the longest common subsequence
problem, which requires finding the longest common subsequence of given two
sequences, can be solved by the dynamic programming [1]. Since a sequence
have an exponential number of subsequences, a straightforward algorithm takes
an exponential time to find the longest common subsequence. However, it is
known that this problem can be solved in O(nm) time by the dynamic pro-
gramming, where n and m are the lengths of two sequences. Many important
problems including the edit distance problem, the matrix chain product problem,
and the optimal polygon triangulation problem can be solved by the dynamic
programming [2].

The main contribution of this paper is to implement the dynamic program-
ming to solve the optimal polygon triangulation problem [2] on the GPU. Suppose
that a convex m-gon is given and we want to triangulate it, that is, to split it
into n — 2 triangles by n — 3 non-crossing chords. Figure 1 illustrates an example
of a triangulation of an 8-gon. In the figure, the triangulation has 6 triangles
separated by 5 non-crossing chords. We assume that each of the @ chords
is assigned a weight. The goal of the optimal polygon triangulation is to select
n — 3 non-crossing chords that triangulate a given convex n-gon such that the
total weight of selected chords is minimized. A naive approach, which evaluates
the total weights of all possible % triangulations, takes an exponential
time. On the other hand, it is known that the dynamic programming technique
can be applied to solve the optimal polygon triangulation in O(n?®) time [2,3,
6] using work space of size O(n?). As far as we know, there is no previously
published algorithm running faster than O(n?) time.

In our implementation, we have used two new ideas to accelerate the dynamic
programming. The first idea is to partition the dynamic programming algorithm
into a lot of sequential kernel calls of CUDA, and to select the best method and
the numbers of blocks and threads for each kernel calls (granularity adjustment).
The dynamic programming algorithm for an n-gon has n — 1 stages, each of
which involves the computation of multiple interim data. Earlier stages of the
algorithm are fine grain in the sense that we need to compute the values of
a lot of interim data but the computation of each interim data is light. On
the other hand, later stages of the algorithm are coarse grain in the sense that

Accelerating the Dynamic Programming for Optimal Polygon Triangulation 3

Vo vr

V1 v6

v2 s

v3 Va

Fig. 1. An example of a triangulation of a convex 8-gon

few interim data are computed but the computation is heavy. Thus, in earlier
stages, a single thread is assigned to the computation of each interim data and its
value is computed sequentially by the thread (OneThreadPerEntry). In middle
stages, a block with multiple threads is allocated to the computation for each
interim data and the value of the interim data is computed by threads of a block
in parallel (OneBlockPerEntry). Multiple blocks are allocated to compute each
interim data in later stages (BlocksPerEntry). Also, the size of each block (i.e.
the number of threads), and the number of used blocks affects the performance
of algorithms on the GPU. We have tested all of the three methods for various
sizes of each block and the number of blocks for every stage, and determined the
best way, one of the three methods and the size and the number of blocks for
computing the interim data in each stage.

The second innovative idea is to arrange interim data in two dimensional ar-
ray of the global memory using two types of arrangements: sliding arrangement
and mirroring arrangement. The interim data used in the dynamic program-
ming are stored in a two dimensional array in the global memory of the GPU.
The bandwidth of the global memory is maximized when threads repeatedly
performs coalesced access to it. In other words, if threads accessed to continu-
ous locations of the global memory, these access requests can be completed in
minimum clock cycles. On the other hand, if threads accessed to distant loca-
tions in the same time, these access requests need a lot of clock cycles. We use
the sliding arrangement for OneThreadPerEntry and the mirroring arrangement
for OneBlockPerEntry and BlocksPerEntry. Using these two arrangements, the
coalesced access is performed for the interim data.

Our implementation using these two ideas solves the optimal polygon trian-
gulation problem for a convex 16384-gon in 69.1 seconds on the NVIDIA GeForce
GTX 580, while a conventional CPU implementation runs in 17105.5 seconds.
Thus, our GPU implementation attains a speedup factor of 247.5.

The rest of this paper is organized as follows; Section 2 introduces the optimal
polygon triangulation problem and reviews the dynamic programming approach
solving it. In Section 3, we show the GPU and CUDA architectures to understand

4 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

our new idea. Section 4 proposes our two new ideas to implement the dynamic
programming on the GPU. The experimental results are shown in Section 5.
Finally, Section 6 offers concluding remarks.

2 The optimal polygon triangulation and the dynamic
programming

The main purpose of this section is to define the optimal polygon triangula-
tion problem and to review an algorithm solving this problem by the dynamic
programming [2].

Let vg,v1,...,v,—1 be vertices of a convex n-gon. Clearly, the convex n-gon
can be divided into n — 2 triangles by a set of n — 3 non-crossing chords. We
call a set of such n — 3 non-crossing chords e triangulation. Figure 1 shows an
example of a triangulation of a convex 8-gon. The convex 8-gon is separated into
6 triangles by 5 non-crossing chords. Suppose that a weight w; ; of every chord
vv; in a convex n-gon is given. The goal of the optimal polygon triangulation
problem is to find an optimal triangulation that minimizes the total weights of
selected chords for the triangulation. More formally, we can define the problem
as follows. Let T be a set of all triangulations of a convex n-gon and ¢t € T be a
triangulation, that is, a set of n — 3 non-crossing chords. The optimal polygon
triangulation problem requires finding the total weight of a minimum weight
triangulation as follows:

min{ Z Wi, 5 | te T}.

v;v; €

We will show that the optimal polygon triangulation can be solved by the
dynamic programming. For this purpose, we define the parse tree of a triangula-
tion. Figure 2 illustrates the parse tree of a triangulation. Let I; (1 <4 <n—1)
be edge v;_1v; of a convex n-gon. Also, let r denote edge vov,_1- The parse
tree is a binary tree of a triangulation, which has the root r and n — 1 leaves
l1,l5,...,ln—1. It also has n — 3 internal nodes (excluding the root r), each of
which corresponds to a chord of the triangulation. Edges are drawn from the root
toward the leaves as illustrated in Figure 2. Since each triangle has three nodes,
the resulting graph is a full binary tree with n — 1 leaves, in which every internal
node has exactly two children. Conversely, for any full binary tree with n — 1
leaves, we can draw a unique triangulation. It is well known that the number of
full binary trees with n + 1 leaves is the Catalan number %[12] Thus, the
number of possible triangulations of convex n-gon is % Hence, a naive
approach, which evaluates the total weights of all possible triangulations, takes
an exponential time.

We are now in position to show an algorithm using the dynamic programming
for the optimal polygon triangulation problem. Suppose that an n-gon is chopped
off by a chord v;_1v; (0 <4 < j <n—1) and we obtain a (j—i)-gon with vertices
Vi—1,V;,...,v; as illustrated in Figure 3. Clearly, this (j —¢)-gon consists of leaves

Accelerating the Dynamic Programming for Optimal Polygon Triangulation 5

Vo r V7
151 Ir
V1 ve
l2 le
Vo s
l3 l5
vy lg vy
r
7
I l2 I3
le
la s

Fig. 2. The parse tree of a triangulation

li,liy1,...,1; and a chord v;_qv;. Let m; ; be the minimum weight of the (j —i)-
gon. The (j — i)-gon can be partitioned into the (k — ¢)-gon, the (j — k)-gon,
and the triangle v;_ivxv; as illustrated in Figure 3. The values of k£ can be an
integer from ¢ to j — 1. Thus, we can recursively define m; ; as follows:

mi’j:(] lfJ—ZS].,
m;; = min (m,”k +Mpy1,; + W1+ w,w-) otherwise.
i<k<j—1
The figure also shows its parse tree. The reader should have no difficulty to
confirm the correctness of the recursive formula and the minimum weight of the
n-gon is equal to mq 1.
Let M;; = m;; + w;—1,; and wg p—1 = 0. We can recursively define M; ; as
follows:

M;; =0 ifj—i<1,
Mi,j = min (Mz',k + Mk+1,j) +w;—1,; otherwise.
i<k<j-1
It should be clear that M ,—1 = M1 pn—1 + Wo,n—1 = M1,p—1 is the minimum
weight of the n-gon.
Using the recursive formula for M; ;, all the values of M; ; can be computed
in n — 1 stages by the dynamic programming as follows:

Stage 0 Ml,l = M2,2 =---=Mn-1n-1= 0.

6 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

Fig. 3. A (j — i)-gon is partitioned into a (k —4)-gon and a (j — k)-gon

Stage 1 M,',z'+1 = Wi—1,i+1 for all 4 (1 S) S n— 2)
Stage 2 Mi7i+2 = miniSkSH-l (M%k —|— Mk+1,i+2) + wi—l,i—i—? fOI‘ all l (]. S l S
n—3)

Stage p M;;qp = mini§k§i+p71(Mi,k + Mk+1,,'+p) + w;_1,i4p for all ¢ (1 <3<
n—p-—1)

Stage n — 3 M; p4i—3 = mini<i<nti—a(Mir + Mpy1nyi-3) + Wi—1,nti—3 for
all i (1<i<2)
Stage n — 2 My, 1 = minj<p<n2(Mip + Mgy1,n-1) + Wo,n—1

Figure 4 shows examples of w; ; and M; ; for a convex 8-gon. It should be
clear that each stage computes the values of table M; ; in a particular diagonal
position. Let us analyze the computation performed in each Stage p (2 < p <
n—2).

- (n—p—1) M;;’s, M1 pt1,Mopya, ..., Mp_p_1,n—1 are computed, and
— the computation of each M; ;’s involves the computation of the minimum
over p values, each of which is the sum of two M; ;’s.

Thus, Stage p takes (n—p—1)-O(p) = O(n? —p?) time. Therefore, this algorithm
runs in Y ocpcp, o O(n? — p?) = O(n?) time.

From this analysis, we can see that earlier stages of the algorithm is fine
grain in the sense that we need to compute the values of a lot of M; ;’s but the
computation of each M; ; is light. On the other hand, later stages of the algorithm
is coarse grain in the sense that few M; ;’s are computed but its computation is
heavy.

Accelerating the Dynamic Programming for Optimal Polygon Triangulation

3| 2 1|3

Wi, j
1 3 |4
1|5

Stage 5

Stage 4

Stage 3

Stage 2

Stage 1

T

Stage 0

Fig. 4. Examples of w; ; and M, ;

8 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

3 GPU and CUDA architectures

CUDA uses two types of memories in the NVIDIA GPUs: the global memory
and the shared memory [10]. The global memory is implemented as an off-chip
DRAM of the GPU, and has large capacity, say, 1.5-6 Gbytes, but its access
latency is very long. The shared memory is an extremely fast on-chip memory
with lower capacity, say, 16-48 Kbytes. The efficient usage of the global memory
and the shared memory is a key for CUDA developers to accelerate applica-
tions using GPUs. In particular, we need to consider the coalescing of the global
memory access and the bank conflict of the shared memory access [11,7,8]. To
maximize the bandwidth between the GPU and the DRAM chips, the consecu-
tive addresses of the global memory must be accessed in the same time. Thus,
threads should perform coalesced access when they access to the global memory.
Figure 5 illustrates the CUDA hardware architecture.

Global
memory
Streaming
multiprocessor

Streaming Streaming

multiprocessor multiprocessor

Fig. 5. CUDA hardware architecture

CUDA parallel programming model has a hierarchy of thread groups called
grid, block and thread. A single grid is organized by multiple blocks, each of which
has equal number of threads. The blocks are allocated to streaming processors
such that all threads in a block are executed by the same streaming processor in
parallel. All threads can access to the global memory. However, as we can see in
Figure 5, threads in a block can access to the shared memory of the streaming
processor to which the block is allocated. Since blocks are arranged to multiple
streaming processors, threads in different blocks cannot share data in shared
memories.

CUDA C extends C language by allowing the programmer to define C func-
tions, called kernels. By invoking a kernel, all blocks in the grid are allocated
in streaming processors, and threads in each block are executed by processor
cores in a single streaming processor. The kernel calls terminates, when threads
in all blocks finish the computation. Since all threads in a single block are exe-
cuted by a single streaming processor, the barrier synchronization of them can

Accelerating the Dynamic Programming for Optimal Polygon Triangulation 9

be done by calling CUDA C syncthreds () function. However, there is no direct
way to synchronize threads in different blocks. One of the indirect methods of
inter-block barrier synchronization is to partition the computation into kernels.
Since continuous kernel calls can be executed such that a kernel is called after all
blocks of the previous kernel terminates, execution of blocks is synchronized at
the end of kernel calls. Thus, we arrange a single kernel call to each of n—1 stages
of the dynamic programming algorithm for the optimal polygon triangulation
problem.

As we have mentioned, the coalesced access to the global memory is a key
issue to accelerate the computation. As illustrated in Figure 6, when threads
access to continuous locations in a row of a two-dimensional array (horizon-
tal access), the continuous locations in address space of the global memory are
accessed in the same time (coalesced access). However, if threads access to con-
tinuous locations in a column (vertical access), the distant locations are accessed
in the same time (stride access). From the structure of the global memory, the
coalesced access maximizes the bandwidth of memory access. On the other hand,
the stride access needs a lot of clock cycles. Thus, we should avoid the stride
access (or the vertical access) and perform the coalesced access (or the horizontal
access) whenever possible.

to tr to t7
R AR R RAAR AR
O e I

horizontal
tal access coalesced access

to . vertical accesp to ¢
= R A A A A A A
- R O Y O I
e stride access

t7—>

2-dimensional array

Fig. 6. Coalesced and stride access

4 Our implementation of the dynamic programming for
the optimal polygon triangulation

The main purpose of this section is to show our implementation of dynamic
programming for the optimal polygon triangulation in the GPU. We focus on
our new ideas, granularity adjustment and sliding and mirroring arrangements
for accelerating the dynamic programming algorithm.

10 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

4.1 Granularity adjustment technique

Recall that each Stage p (2 < p < n — 2) consists of the computation of
(n —p—1) M,;;’s each of which involves the computation of the minimum of
p values. We consider three methods, OneThreadPerEntry, OneBlockPerEntry,
and BlocksPerEntry to perform the computation of each of the n — 2 stages.
In OneThreadPerEntry, each M; ;4, is computed sequentially by one thread. In
OneBlockPerEntry, each M; ;;, is computed by one block with multiple threads
in parallel. In BlocksPerEntry, each M; ;,, is computed by multiple blocks in
parallel.

Let ¢ be the number of threads in each block and b be the number of blocks.
In our implementation of the three methods, ¢ and b can be the parameters that
can be changed to get the best performance. The details of the implementation
of the three methods are spelled out as follows:

OneThreadPerEntry(t): Each M;;y, is computed by a single thread sequen-
tially. Thus, we use (n—p—1) threads totally. Since each block has ¢ threads,
"_T”_l blocks are used.

OneBlockPerEntry(t): Each M;;,, is computed by a block with ¢ threads.
The computation of M; ;1, involves the p sums M; p + Miypr+1 (1 < k <
i+ p —1). The ¢ threads compute p sums in parallel such that each thread
computes ¥ sums and their local minimum of the £ sums is computed. The
resulting local ¢ minima are written into the shared memory. After that, a
single thread is used to compute the minimum of the ¢ local minima.

BlocksPerEntry (b, t): Each M, ;,, is computed by b blocks with ¢ threads
each. The computation of p sums are arranged b blocks equally. Thus, each
block computes the £ sums and their minimum is computed in the same way
as OneBlockPerEntry(t). The resulting b minima are written to the global
memory. The minimum of the b minima is computed by a single thread.

For each Stage p (2 < p < n — 2), we can choose one of the three methods
OneThreadPerEntry(t), OneBlockPerEntry(t), and BlocksPerEntry(b,t), inde-
pendently.

4.2 Sliding and mirroring arrangement

Recall that, each Stage p (2 < p < n — 2) of the dynamic programming involves
the computation

Miipp=_min (Mik + Myritp) + Wiztitp-
Let us first observe the naive arrangement which allocates each M; ; to the (i, 5)
element of the two dimensional array, that is, the element in the i-th row and
the j-th column. As illustrated in Figure 7, to compute M; ;,, in Stage p

— p interim data M; ;, M; j1+1,. .., M;iyp—1 in the same row and
— p interim data M;41 i1p, Mit2,i4p,- -+ Mitp,itp in the same column

Accelerating the Dynamic Programming for Optimal Polygon Triangulation 11

M.i,,' M; itp—1 Mi,i+p
AN Mi1,i4p
N
N Mitpitp

Fig. 7. The computation of M;;1p

are accessed. Hence, the naive arrangement involves the vertical access (or the
stride access), which decelerates the computing time.

For the coalesced access of the global memory, we present two arrangements
of M; ;s in a two dimensional array, the sliding arrangement and the mirroring
arrangement as follows:

Sliding arrangement: Each M, ; (0 < ¢ < j <n—1)is allocated to (i—j+n, j)
element of the two dimensional array of size n x n.

Mirroring arrangement Each M;; (0 <i < j < n — 1) is allocated to (i, j)
element and (j,4) element.

The reader should refer to Figure 8 for illustrating the sliding and mirroring

arrangements. We will use sliding arrangement for OneThreadPerEntry and the
mirroring arrangement for OneBlockPerEntry and BlocksPerEntry.

(Mo, 5 \Mo,0|Mo,1|Mo,2|Mp,3|Mo,4 Mo, 5

(Mo, 4|M1 5 \Mo,1|My,1|My 2|My 3|M1 4[M1 5

(Mo, 3|M1,4|M2 5 (Mo, 2|My 2[Ms 2| Mz 3Ms 4|Ms 5

(Mo,2|M1,3(M2,4|M3,5 (Mo,sM1,3\M2,3[Ms3,3\M3,4Ms,5

Mo,1(M1,2|M2 3|M3,4[My 5 \Mo,4|\M1,4|Mo 4|M3,4|My, 4[My 5

Mo,o|M1,1|Mz2, 2|M3 3|My 4|Ms5 5 Mo, 5|M1,5|Mz2 5|M3 5|My,5|Ms,5
Sliding arrangement Mirroring arrangement

Fig. 8. Sliding and Mirroring arrangements

We will show that the vertical access can be avoided if we use the sliding
arrangement for OneThreadPerEntry. Suppose that each thread ¢ computes the

12 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

value of M; ;4. First, each thread ¢ reads M; ; in parallel and then read M; 1 i4p
in parallel. Thus, Mg o, Mi,1, ... are read in parallel and then My 14p, M2 24p,.-.
are read in parallel. Clearly, Moo, M1,1,... are in the same row of the sliding
arrangement. Also, My 14p, M2 24p,... are also in the same row. Thus, the co-
alesced read is performed. Similarly, we can confirm that the remaining read
operations by multiple threads perform the coalesced read.

Next, we will show that the vertical access can be avoided if we use the
mirroring arrangement for OneBlockPerEntry and BlocksPerEntry. Suppose that
a block computes the value of M; ;1 ,. Threads in the block read M; ;, M; iy1, ...,
M; i1+ p—1 in parallel, and then read M1 i4p, Mit2,i4p; - - - Miyp,i+p in parallel.
Clearly, M;;, M; 41, .., M;i1p—1 are stored in (i,4),(i,¢ + 1),...,({,i +p —
1) elements in the two dimensional array of the mirroring arrangement, thus,
the treads perform the coalesced read. For the coalesced read, threads read
Mi+l,i+p7 Mi+2,i+l’7 RS Mi+p,i+l) stored in (Z+p7 Z+1)7 (Z+p) Z+2)7 ety (Z+p7 l+p)
elements in the two dimensional array of the mirroring arrangement. Clearly,
these elements are in the same row and the threads perform the coalesced read.

4.3 Our algorithm for the optimal polygon triangulation

Our algorithm for the optimal polygon triangulation is designed as follows: For
each Stage p (2 < p < n—2), we execute three methods OneThreadPerEntry(¢),
OneBlockPerEntry(t), and BlocksPerEntry(b,t) for various values of ¢ and b,
and find the fastest method and parameters. As we are going to show later,
OneThreadPerEntry is the fastest in earlier stages. In middle stages, OneBlock-
PerEntry is fastest. Finally, BlocksPerEntry is the best in later stages. Thus, we
first use the sliding arrangement in earlier stages computed by OneThreadPer-
Entry. We then convert the two dimensional array with the sliding arrangement
into the mirroring arrangement. After that, we execute OneBlockPerEntry and
then BlocksPerEntry in the remaining stages.

5 Experimental results

We have implemented our dynamic programming algorithm for the optimal poly-
gon triangulation using CUDA C. We have used NVIDIA GeForce GTX 580
with 512 processing cores (16 Streaming Multiprocessors which has 32 process-
ing cores) running in 1.544GHz and 3GB memory. For the purpose of estimating
the speedup of our GPU implementation, we have also implemented a conven-
tional software approach of the dynamic programming for the optimal polygon
triangulation using GNU C. We have used Intel Core i7 870 running in 2.93GHz
and 8GB memory to run the sequential algorithm for the dynamic programming.

Table 1 shows the computing time in seconds for a 16384-gon. Table 1 (a)
shows the computing time of OneThreadPerEntry (¢) for t = 32, 64, 128, 256, 512,
1024. The computing time is evaluated for the naive arrangement and the sliding
arrangement. For example, if we execute OneThreadPerEntry(64) for all stages

Accelerating the Dynamic Programming for Optimal Polygon Triangulation 13

on the naive arrangement, the computing time is 854.8 seconds. OneThreadPer-
Entry(64) runs in 431.8 seconds on the sliding arrangement and thus, the sliding
arrangement can attain a speedup of factor 1.98.

Table 1 (b) shows the computing time of OneBlockPerEntry(¢) for ¢ =
32,64,128,256,512,1024. Let us select ¢ that minimizes the computing time.
OneBlockPerEntry(128) takes 604.7 seconds for the naive arrangement and OneBlock-
PerEntry(128) runs in 73.5 seconds for the mirroring arrangement. Thus, the
mirroring arrangement can attain a speedup of factor 8.23.

Table 1 (c) shows the computing time of BlocksPerEntry(b,t) for b = 2,4,8
and t = 32,64,128,256,512,1024. Again, let us select b and ¢t that minimize
the computing time. BlocksPerEntry(2,128) takes 610.9 seconds for the naive
arrangement and BlocksPerEntry(2,128) runs in 97.8 seconds for the mirroring
arrangement. Thus, the mirroring arrangement can attain a speedup of factor
6.25.

Table 1. The computing time (seconds) for a 16384-gon using each of the three meth-
ods

(a) The computing time of OneThreadPerEntry(t)
t 32| 64| 128 256| 512 1024
naive arrangement (596.8(854.8|863.3|889.2(1202.0(1614.2
sliding arrangement|312.8|431.8|442.2|541.0| 668.3(1023.2

(b) The computing time of OneBlockPerEntry(t)
t 32| 64| 128 256 512 1024
naive arrangement |631.8|606.8(604.7|612.3|678.7|1286.5
mirroring arrangement|169.5| 98.5| 73.5| 80.4]225.0| 824.8

(c) The computing time of BlocksPerEntry(b, t)

t 32| 64| 128 256| 512 1024
b =2|650.2{614.6/610.9(627.3| 828.8|2007.8
naive arrangement |b = 4(650.5(617.5(624.9(673.1/1174.9|3585.0
b = 8(655.6(630.5/670.0{815.1|1917.8(6779.5
b=2(176.3|110.8| 97.8|129.1| 422.6(1611.7
mirroring arrangement|b = 4|188.5|136.2|148.2|229.8| 820.3|3188.6
b = 8|216.0{189.9|250.5433.6|1613.7|6337.9

Figure 9 shows the running time of each stage using the three methods.
For each of the three methods and for each of the 16382 stages, we select best
values of the number ¢ of threads in each block and the number b of blocks.
Also, the sliding arrangement is used for OneThreadPerEntry and the mirroring
arrangement is used for OneBlockPerEntry and BlocksPerEntry. Recall that we
can use different methods with different parameters can be used for each stage
independently. Thus, to attain the minimum computing time we should use

14 Kazufumi Nishida, Koji Nakano, Yasuaki Ito

— OneThreadPerEntry for Stages 0-49,
— OneBlockPerEntry for Stages 50-16350, and
— BlocksPerEntry for Stages 16351-16382.

Note that if we use three methods for each stage in this way, we need to convert
the sliding arrangement into the mirroring arrangement. This conversion takes
only 0.21 mseconds. Including the conversion time, the best total computing
time of our implementation for the optimal polygon triangulation problem is
69.1 seconds. The sequential implementation used Intel Core i7 870 runs in
17105.5 seconds. Thus, our best GPU implementation attains a speedup factor
of 247.5.

35 T T T T T

T T
OneThreadPerEntry
OneBlockPerEntry
BlocksPerEntry

30 1

20 [b

15 1

Running Time(ms)

0 2046 4094 6142 8190 10238 12286 14334 16382
Stage

Fig. 9. The running time of each stage using three methods

6 Concluding remarks

In this paper, we have proposed an implementation of the dynamic programming
algorithm for an optimal polygon triangulation on the GPU. Our implementation
selects the best methods, parameters, and data arrangement for each stage to
obtain the best performance. The experimental results show that our implemen-
tation solves the optimal polygon triangulation problem for a convex 16384-gon
in 69.1 seconds on the NVIDIA GeForce GTX 580, while a conventional CPU
implementation runs in 17105.5 seconds. Thus, our GPU implementation attains
a speedup factor of 247.5.

Accelerating the Dynamic Programming for Optimal Polygon Triangulation 15

References

10.
11.
12.
13.

. Bergroth, L., Hakonen, H., T. Raita, T.: A survey of longest common subsequence

algorithms. In: Proc. of International Symposium on String Processing and Infor-
mation Retrieval (2000)

Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press (1990)

Gilbert, P.D.: New results on planar Triangulations. In: M.Sc. thesis. pp. Report
R-850 (July 1979)

Hwu, W.W.: GPU Computing Gems Emerald Edition. Morgan Kaufmann (2011)
Ito, Y., Ogawa, K., Nakano, K.: Fast ellipse detection algorithm using Hough trans-
form on the GPU. In: Proc. of International Conference on Networking and Com-
puting. pp. 313-319 (Dec 2011)

Klincsek, G.T.: Minimal triangulations of polygonal domains. Annals of Discrete
Mathematics 9, 121-123 (July 1980)

Man, D., Uda, K., Ito, Y., Nakano, K.: A GPU implementation of computing
Euclidean distance map with efficient memory access. In: Proc. of International
Conference on Networking and Computing. pp. 68-76 (Dec 2011)

Man, D., Uda, K., Ueyama, H., Ito, Y., Nakano, K.: Implementations of a paral-
lel algorithm for computing Euclidean distance map in multicore processors and
GPUs. International Journal of Networking and Computing 1(2), 260-276 (July
2011)

Nishida, K., Ito, Y., Nakano, K.: Accelerating the dynamic programming for the
matrix chain product on the GPU. In: Proc. of International Conference on Net-
working and Computing. pp. 320-326 (Dec 2011)

NVIDIA Corp.: NVIDIA CUDA C Programming Guide Version 4.1 (2011)
NVIDIA Corp.: CUDA C Best Practice Guide Version 4.1 (2012)

Pélya, G.: On picture-writing. Amer. Math. Monthly 63, 689-697 (1956)

Uchida, A., Ito, Y., Nakano, K.: Fast and accurate template matching using pixel
rearrangement on the GPU. In: Proc. of International Conference on Networking
and Computing. pp. 153-159 (Dec 2011)

