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PAPER
A GPU Implementation of Dynamic Programming for the Optimal
Polygon Triangulation

Yasuaki ITO† and Koji NAKANO†, Members

SUMMARY This paper presents a GPU (Graphics Processing Units)
implementation of dynamic programming for the optimal polygon triangu-
lation. Recently, GPUs can be used for general purpose parallel compu-
tation. Users can develop parallel programs running on GPUs using pro-
gramming architecture called CUDA (Compute Unified Device Architec-
ture) provided by NVIDIA. The optimal polygon triangulation problem for
a convex polygon is an optimization problem to find a triangulation with
minimum total weight. It is known that this problem for a convex n-gon
can be solved using the dynamic programming technique in O(n3) time
using a work space of size O(n2). In this paper, we propose an efficient
parallel implementation of this O(n3)-time algorithm on the GPU. In our
implementation, we have used two new ideas to accelerate the dynamic
programming. The first idea (adaptive granularity) is to partition the dy-
namic programming algorithm into many sequential kernel calls of CUDA,
and to select the best parameters for the size and the number of blocks for
each kernel call. The second idea (sliding and mirroring arrangements) is
to arrange the working data for coalesced access of the global memory in
the GPU to minimize the memory access overhead. Our implementation
using these two ideas solves the optimal polygon triangulation problem for
a convex 8192-gon in 5.57 seconds on the NVIDIA GeForce GTX 680,
while a conventional CPU implementation runs in 1939.02 seconds. Thus,
our GPU implementation attains a speedup factor of 348.02.
key words: Dynamic programming, parallel algorithms, coalesced mem-
ory access, GPGPU, CUDA

1. Introduction

Dynamic programming is an important algorithmic tech-
nique to find an optimal solution of a problem over an expo-
nential number of solution candidates [1]. A naive solution
for such problem needs exponential time. The key idea be-
hind dynamic programming is to:

• partition a problem into subproblems,
• solve the subproblems independently, and
• combine the solution of the subproblems

to reach an overall solution. Dynamic programming enables
us to solve such problems in polynomial time. For example,
the longest common subsequence problem, which requires
finding the longest common subsequence of given two se-
quences, can be solved by the dynamic programming ap-
proach [2]. Since a sequence have an exponential number
of subsequences, a straightforward algorithm takes an expo-
nential time to find the longest common subsequence. How-
ever, it is known that this problem can be solved in O(nm)
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time by the dynamic programming approach, where n and m
are the lengths of two sequences. Many important problems
including the edit distance problem, the matrix chain prod-
uct problem, and the optimal polygon triangulation problem
can be solved by the dynamic programming approach [1].

The GPU (Graphics Processing Unit), is a specialized
circuit designed to accelerate computation for building and
manipulating images [3]–[7]. Latest GPUs are designed for
general purpose computing and can perform computation
in applications traditionally handled by the CPU. Hence,
GPUs have recently attracted the attention of many appli-
cation developers [3], [8], [9]. NVIDIA provides a parallel
computing architecture called CUDA (Compute Unified De-
vice Architecture) [10], the computing engine for NVIDIA
GPUs. CUDA gives developers access to the virtual instruc-
tion set and memory of the parallel computational elements
in NVIDIA GPUs. In many cases, GPUs are more efficient
than multicore processors [11], since they have hundreds of
processor cores running in parallel.

The main contribution of this paper is to implement the
dynamic programming approach to solve the optimal poly-
gon triangulation problem [1] on the GPU. Suppose that a
convex n-gon is given and we want to triangulate it, that is,
to split it into n − 2 triangles by n − 3 non-crossing chords.
Figure 1 illustrates an example of a triangulation of an 8-
gon. In the figure, the triangulation has 6 triangles separated
by 5 non-crossing chords. We assume that each of the n(n−3)

2
chords is assigned a weight. The goal of the optimal poly-
gon triangulation is to select n − 3 non-crossing chords that
triangulate a given convex n-gon such that the total weight
of selected chords is minimized. A naive approach, which
evaluates the total weights of all possible (2n−4)!

(n−1)!(n−2)! trian-
gulations, takes an exponential time. On the other hand, it
is known that the dynamic programming technique can be
applied to solve the optimal polygon triangulation in O(n3)
time [1], [12], [13] using work space of size O(n2). As far
as we know, there is no previously published algorithm run-
ning faster than O(n3) time.

In our implementation, we have used two new ideas to
accelerate the dynamic programming algorithm. The first
idea is to partition the dynamic programming algorithm into
a lot of sequential kernel calls of CUDA, and to select the
best method and the numbers of blocks and threads for each
kernel calls (Adaptive granularity). The dynamic program-
ming algorithm for an n-gon has n− 1 stages, each of which
involves the computation of multiple working data. Earlier
stages of the algorithm are fine grain in the sense that we
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Fig. 1 An example of a triangulation of a convex 8-gon

need to compute the values of a lot of working data but the
computation of each working data is light. On the other
hand, later stages of the algorithm are coarse grain in the
sense that few working data are computed but the compu-
tation is heavy. Thus, in earlier stages, a single thread is
assigned to the computation of each working data and its
value is computed sequentially by a thread (thread-based
method). In later stages, one or more blocks with multi-
ple threads are allocated to the computation for each work-
ing data and the value of the working data is computed by
threads of blocks in parallel (block-based method). Also,
the size of each block (i.e. the number of threads), and the
number of used blocks affect the performance of algorithms
on the GPU. We have tested these approaches for various
parameters and determined the best way in each stage. Each
stage selects the corresponding best way to attain the ulti-
mate performance.

The second idea is to arrange working data in a 2-
dimensional array of the global memory using two types of
arrangements: sliding arrangement and mirroring arrange-
ment. The working data used in the dynamic programming
algorithm are stored in a 2-dimensional array in the global
memory of the GPU. The bandwidth of the global memory
is maximized when threads repeatedly perform coalesced
access to it. In other words, if threads accessed to contin-
uous locations of the global memory, these access requests
can be completed in minimum clock cycles. On the other
hand, if threads access distant locations in the same time,
these access requests need a lot of clock cycles. We use
the sliding arrangement for the thread-based method and the
mirroring arrangement for the block-based method. Using
these two arrangements, the coalesced access is performed
for the working data.

Our implementation using these two ideas solves the
optimal polygon triangulation problem for a convex 8192-
gon in 5.57 seconds on the NVIDIA GeForce GTX 680,
while a conventional CPU implementation runs in 1939.02
seconds. Thus, our GPU implementation attains a speedup
factor of 348.02.

The rest of this paper is organized as follows; Section 2
introduces the optimal polygon triangulation problem and
reviews the dynamic programming approach solving it. In
Section 3, we show the GPU and CUDA architectures to
understand our new idea. Section 4 proposes our two new

ideas to implement the dynamic programming approach on
the GPU. The experimental results are shown in Section 5.
Finally, Section 6 offers concluding remarks.

2. The optimal polygon triangulation and the dynamic
programming approach

The main purpose of this section is to define the opti-
mal polygon triangulation problem and to review an algo-
rithm solving this problem by the dynamic programming
approach [1].

Let v0, v1, . . . , vn−1 be vertices of a convex n-gon.
Clearly, the convex n-gon can be divided into n − 2 trian-
gles by a set of n − 3 non-crossing chords. We call a set
of such n − 3 non-crossing chords a triangulation. Figure 1
shows an example of a triangulation of a convex 8-gon. The
convex 8-gon is separated into 6 triangles by 5 non-crossing
chords. Suppose that a weight wi, j, which is a real number,
of every chord viv j in a convex n-gon is given. The goal
of the optimal polygon triangulation problem is to find an
optimal triangulation that minimizes the total weights of se-
lected chords for the triangulation. More formally, we can
define the problem as follows. Let T be a set of all triangu-
lations of a convex n-gon and t ∈ T be a triangulation, that
is, a set of n − 3 non-crossing chords. The optimal polygon
triangulation problem requires finding the total weight of a
minimum weight triangulation as follows:

min{
∑
viv j∈t
wi, j | t ∈ T }.

We will show that the optimal polygon triangulation
can be solved by the dynamic programming approach. For
this purpose, we define the parse tree of a triangulation.
Figure 2 illustrates the parse tree of a triangulation. Let li
(1 ≤ i ≤ n − 1) be edge vi−1vi of a convex n-gon. Also,
let r denote edge v0vn−1. The parse tree is a binary tree
of a triangulation, which has the root r and n − 1 leaves
l1, l2, . . . , ln−1. It also has n− 3 internal nodes (excluding the
root r), each of which corresponds to a chord of the trian-
gulation. Edges are drawn from the root toward the leaves
such that a node and its two children construct a triangle in
a triangulation as illustrated in Figure 2. Since each trian-
gle has three nodes, the resulting graph is a full binary tree
with n − 1 leaves, in which every internal node has exactly
two children. Conversely, for any full binary tree with n − 1
leaves, we can draw a unique triangulation. It is well known
that the number of full binary trees with n + 1 leaves is the
Catalan number (2n)!

(n+1)!n! [14]. Thus, the number of possible
triangulations of convex n-gon is (2n−4)!

(n−1)!(n−2)! . Hence, a naive
approach, which evaluates the total weights of all possible
triangulations, takes an exponential time.

We are now in a position to show an algorithm using
the dynamic programming approach for the optimal polygon
triangulation problem. Suppose that an n-gon is chopped off
by a chord vi−1v j (0 ≤ i < j ≤ n − 1) and we obtain a
( j − i)-gon with vertices vi−1, vi, . . . , v j as illustrated in Fig-
ure 3. Clearly, this ( j− i)-gon consists of leaves li, li+1, . . . , l j
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Fig. 2 The parse tree of a triangulation

and a chord vi−1v j. Let mi, j be the minimum weight of trian-
gulation on the ( j− i)-gon. The ( j− i)-gon can be partitioned
into the (k − i)-gon, the ( j − k)-gon, and the triangle vi−1vkv j
as illustrated in Figure 3. The values of k can be an inte-
ger from i to j − 1. Thus, we can recursively define mi, j as
follows:

mi, j = 0 if j − i ≤ 1,
mi, j = min

i≤k≤ j−1
(mi,k + mk+1, j + wi−1,k + wk, j) otherwise.

The figure also shows its parse tree. The reader should have
no difficulty to confirm the correctness of the recursive for-
mula and the minimum weight of triangulation on the n-gon
is equal to m1,n−1.
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Fig. 3 A ( j − i)-gon is partitioned into a (k − i)-gon and a ( j − k)-gon

Let Mi, j = mi, j + wi−1, j and w0,n−1 = 0. We can recur-
sively define Mi, j as follows:

Mi, j = 0 if j − i ≤ 1,
Mi, j = min

i≤k≤ j−1
(Mi,k + Mk+1, j) + wi−1, j otherwise.

It should be clear that M1,n−1 = m1,n−1 + w0,n−1 = m1,n−1 is
the minimum weight of triangulation on the n-gon.

Using the recursive formula for Mi, j, all the values of
Mi, j’s can be computed in n − 1 stages by the dynamic pro-
gramming algorithm as follows:

Stage 0 M1,1 = M2,2 = · · · = Mn−1,n−1 = 0.
Stage 1 Mi,i+1 = wi−1,i+1 for all i (1 ≤ i ≤ n − 2)
Stage 2 Mi,i+2 = mini≤k≤i+1(Mi,k +Mk+1,i+2)+wi−1,i+2 for all

i (1 ≤ i ≤ n − 3)
...

Stage p Mi,i+p = mini≤k≤i+p−1(Mi,k +Mk+1,i+p)+wi−1,i+p for
all i (1 ≤ i ≤ n − p − 1)
...

Stage n − 3 Mi,n+i−3 = mini≤k≤n+i−4(Mi,k + Mk+1,n+i−3) +
wi−1,n+i−3 for all i (1 ≤ i ≤ 2)

Stage n − 2 M1,n−1 = min1≤k≤n−2(Mi,k + Mk+1,n−1) + w0,n−1

Figure 4 shows examples of wi, j and Mi, j for a convex
8-gon. It should be clear that each stage computes the values
of table Mi, j in a particular diagonal position. Also, Figure 5
illustrates how Mi, j is computed. To obtain the values of
Mi, j, the sum of each of p pairs are computed and then the
minimum of the p sums is computed. In other words, the
sum-minimum of p pairs is computed for each Mi, j. Let us
analyze the computation performed in each Stage p (2 ≤
p ≤ n − 2).

• (n − p − 1) Mi, j’s, M1,p+1,M2,p+2, . . . , Mn−p−1,n−1 are
computed, and
• the computation of each Mi, j’s involves the computa-

tion of the minimum of p values, each of which is the
sum of two Mi, j’s.

Thus, Stage p takes (n−p−1)·O(p) = O(n2−p2) time. There-
fore, this algorithm runs in

∑
2≤p≤n−2 O(n2 − p2) = O(n3)

time.
From this analysis, we can see that earlier stages of the

algorithm is fine grain in the sense that we need to compute
the values of a lot of Mi, j’s but the computation of each Mi, j
is light. On the other hand, later stages of the algorithm is
coarse grain in the sense that few Mi, j’s are computed but
its computation is heavy.

3. GPU and CUDA architectures

CUDA uses two types of memories in the NVIDIA GPUs:
the global memory and the shared memory [10]. The global
memory is implemented as an off-chip DRAM of the GPU,
and has large capacity, say, 1.5-6 Gbytes, but its access la-
tency is very long. The shared memory is an extremely fast
on-chip memory with lower capacity, say, 16-48 Kbytes.
The efficient usage of the global memory and the shared
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Fig. 4 Examples of wi, j and Mi, j
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Fig. 5 The computation of Mi,i+p

memory is a key for CUDA developers to accelerate applica-
tions using GPUs. In particular, we need to consider the coa-
lescing of the global memory access and the bank conflict of
the shared memory access [5], [11], [15]. To maximize the
bandwidth between the GPU and the DRAM chips, the con-
secutive addresses of the global memory must be accessed
in the same time. Thus, threads should perform coalesced
access when they access to the global memory. Figure 6
illustrates the CUDA hardware architecture.

CUDA parallel programming model has a hierarchy of
thread groups called grid, block and thread. A single grid is
organized by multiple blocks, each of which has equal num-
ber of threads. The blocks are allocated to streaming proces-
sors such that all threads in a block are executed by the same
streaming processor in parallel. All threads can access to the
global memory. However, as we can see in Figure 6, threads
in a block can access to the shared memory of the streaming
processor to which the block is allocated. Since blocks are
arranged to multiple streaming processors, threads in differ-
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Fig. 6 CUDA hardware architecture

ent blocks cannot share data in shared memories.
CUDA C extends C language by allowing the program-

mer to define C functions, called kernels. By invoking a
kernel, all blocks in the grid are allocated in streaming pro-
cessors, and threads in each block are executed by proces-
sor cores in a single streaming processor. In the execu-
tion, threads in a block are split into groups of thread called
warps. Each of these warps contains the same number of
threads and is executed independently. When a warp is se-
lected for execution, all threads execute the same instruc-
tion. Any flow control instruction can significantly impact
the effective instruction throughput by causing threads of the
same warp to diverge, that is, to follow different execution
paths. If this happens, the different execution paths have to
be serialized. When all the different execution paths have
completed, the threads back to the same execution path.

The kernel calls terminates, when threads in all blocks
finish the computation. Since all threads in a single block
are executed by a single streaming processor, the barrier
synchronization of them can be done by calling CUDA C
syncthreds() function. However, there is no direct way to
synchronize threads in different blocks. One of the indirect
methods of inter-block barrier synchronization is to partition
the computation into kernels. Since continuous kernel calls
can be executed such that a kernel is called after all blocks of
the previous kernel terminates, execution of blocks is syn-
chronized at the end of kernel calls. Thus, we arrange a
single kernel call to each of n− 1 stages of the dynamic pro-
gramming algorithm for the optimal polygon triangulation
problem.

As we have mentioned, coalesced access to the global
memory is a key issue to accelerate the computation. As
illustrated in Figure 7, when threads access to continuous
locations in a row of a two-dimensional array (horizontal
access), the continuous locations in address space of the
global memory are accessed in the same time (coalesced
access). However, if threads access to continuous locations
in a column (vertical access), the distant locations are ac-
cessed in the same time (stride access). From the struc-
ture of the global memory, coalesced access maximizes the
bandwidth of memory access. On the other hand, the stride
access needs a lot of clock cycles. Thus, we should avoid
the stride access (or the vertical access) and perform coa-
lesced access (or the horizontal access) whenever possible.
We note that since all threads in a warp execute the same
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instruction, memory access by threads in the same warp is
performed at the same timing. Therefore, the threads in a
warp can access continuous memories, that is, coalesced ac-
cess can be performed by appropriately addressing.

4. Our implementation of the dynamic programming
approach for the optimal polygon triangulation

The main purpose of this section is to show our implemen-
tation of dynamic programming for the optimal polygon tri-
angulation in the GPU. We focus on our new ideas, adaptive
granularity and sliding and mirroring arrangements for ac-
celerating the dynamic programming algorithm.

4.1 Adaptive granularity

Recall that each Stage p (2 ≤ p ≤ n − 2) consists of the
computation of (n − p − 1) Mi, j’s, each of which is com-
puted by the sum-minimum of p pairs. To compute the value
of Mi, j’s, we consider two methods thread-based (TB) and
block-based (BB).

In the TB method, one thread is used to compute the
value of each of the (n− p−1) Mi, j’s. More specifically, one
thread computes the sum-minimum of p pairs by an obvious
sequential computation. Clearly, we use n − p − 1 threads
if the TB method is used for Stage p. Also, if we arrange
t threads in a block, n−p−1

t blocks are used. For later refer-
ence, we write TB(t) if we use t threads for each block.

In the BB approach, one or more blocks are used to
compute the value of each Mi, j. We write BB(t, b) if we
use b blocks with t threads to compute each Mi, j. Clearly,
BB(t, b) uses (n − p − 1)b blocks for the computation of
Stage p. Since we use b blocks with t threads each to com-
pute Mi, j, we arrange p

b pairs to each block, which is re-
sponsible for computing their sum-minimum. After that, the
minimum of the b resulting sum-minimum values are com-
puted.

Let us explain how we compute the value of
mini≤k≤i+p−1(Mi,k + Mk+1,i+p) using the BB method. In this
method each block uses t

2 words in the shared memory for
communication between threads. For simplicity, let ai−k and
bi−k denote Mi,k and Mk+1,i+p, and will show how we com-
pute min0≤i≤p−1(ai + bi). We first show the computation of
min0≤i≤p−1(ai + bi) by BB(t, 1). For simplicity, we assume
that p is a multiple of t. First, t threads read a0, a1, . . . , at−1
and b0, b1, . . . , bt−1, and compute a0 + b0, a1 + b1, . . . , at−1 +

bt−1. Next, they read at, at+1, . . . , a2t−1 and bt, bt+1, . . . , b2t−1,
and compute at + bt, at+1 + bt+1, . . . , a2t−1 + b2t−1. By repeat-
ing the same procedure, the i-th thread (0 ≤ i ≤ p − 1) com-
putes mi = min0≤ j≤ p

t −1 a j·t+i + b j·t+i. Finally, we compute
m0,m1, . . .mt−1 by the binary reduction technique used for
computing the sum [16]–[18] as follows. The threads parti-
tioned into two groups of t

2 threads each. The t
2 threads in

the second group sends m t
2
,m t

2+1, . . . ,mt−1 to the first group
via the shared memory. The t

2 threads in the first group
compute min(m0,m t

2
),min(m1,m t

2+1), . . . ,min(m t
2−1,mt−1).

The same procedure is recursively executed for the first t
2

threads until the first thread computes min0≤k≤ t
2

mt. Clearly,
this value is equal to min0≤i≤p−1(ai + bi). Figure 8 illustrates
how the algorithm works.

Fig. 8 Illustrating the algorithm for the binary reduction

If more than one block is used, the computation of
min0≤i≤p−1(ai + bi) is equally partitioned and assigned to
each block. Each block compute the sum-minimum inde-
pendently, and the minimum of them is computed by the
atomicMin function supported by CUDA [10]. More specif-
ically, the first thread of each of b block writes the minimum
value to the same address of the global memory using atom-
icMin() function. After all atomic writing operation are ter-
minated, we can obtain the minimum of the written values
by b threads.

4.2 Sliding and mirroring arrangement

Let us first observe the naive arrangement which allocates
each Mi, j to the (i, j) element of the 2-dimensional array,
that is, the element in the i-th row and the j-th column. As
illustrated in Figure 5, to compute Mi,i+p in Stage p

• p working data Mi,i,Mi,i+1, . . . ,Mi,i+p−1 in the same
row and
• p working data Mi+1,i+p,Mi+2,i+p, . . . ,Mi+p,i+p in the

same column

are accessed. Hence, the naive arrangement involves the
vertical access (or the stride access), which decelerates the
computing time.

For coalesced access of the global memory, we present
two arrangements of Mi, js in a 2-dimensional array, the slid-
ing arrangement and the mirroring arrangement as follows:

Sliding arrangement: Each Mi, j (0 ≤ i ≤ j ≤ n − 1) is
allocated to (i − j + n, j) element of the 2-dimensional
array of size n × n.

Mirroring arrangement Each Mi, j (0 ≤ i ≤ j ≤ n − 1) is
allocated to (i, j) element and ( j, i) element.

The reader should refer to Figure 9 for illustrating the slid-
ing and mirroring arrangements. We will use the sliding
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Fig. 9 Sliding and Mirroring arrangements

arrangement for TB and the mirroring arrangement for BB.
We will show that the vertical access can be avoided

if we use the sliding arrangement for the TB. Suppose
that each thread i computes the value of Mi,i+p. First,
each thread i reads Mi,i in parallel and then read Mi+1,i+p
in parallel. Thus, M0,0,M1,1, . . . are read in parallel
and then M1,1+p,M2,2+p, . . . are read in parallel. Clearly,
M0,0,M1,1, . . . are in the same row of the sliding arrange-
ment. Also, M1,1+p,M2,2+p, . . . are also in the same row.
Thus, coalesced read is performed. Similarly, we can con-
firm that the remaining read operations by multiple threads
perform coalesced read.

Next, we will show that the vertical access can be
avoided if we use the mirroring arrangement for the BB.
Suppose that a block computes the value of Mi,i+p. Threads
in the block read Mi,i,Mi,i+1, . . . , Mi,i+p−1 in parallel, and
then read Mi+1,i+p,Mi+2,i+p, . . . , Mi+p,i+p in parallel. Clearly,
Mi,i,Mi,i+1, . . . ,Mi,i+p−1 are stored in (i, i), (i, i+1), . . . , (i, i+
p − 1) elements in the 2-dimensional array of the mirroring
arrangement, and thus, threads perform coalesced read. For
coalesced read, threads read Mi+1,i+p,Mi+2,i+p, . . . ,Mi+p,i+p
stored in (i + p, i + 1), (i + p, i + 2), . . . , (i + p, i + p) ele-
ments in the 2-dimensional array of the mirroring arrange-
ment. Clearly, these elements are in the same row and the
threads perform coalesced read.

4.3 Our algorithm for the optimal polygon triangulation

Our algorithm for the optimal polygon triangulation is de-

signed as follows: For each Stage p (2 ≤ p ≤ n − 2), we
execute two methods, TB(t) and BB(t, b) for various val-
ues of t and b, and find the fastest method and parameters.
As we are going to show later, the TB method is faster in
earlier stages and the BB method is faster in the remaining
stages. Thus, we first use the sliding arrangement in earlier
stages computed by the TB method. We then convert the 2-
dimensional array with the sliding arrangement into the mir-
roring arrangement. After that, we execute the BB method
in the remaining stages. Note that the computing time of our
algorithm depends only on the number of vertices, i.e., it is
independent from the weights of edges. Therefore, given
the number of vertices, we can find and determine the best
method with optimal parameters.

5. Experimental results

We have implemented our dynamic programming algorithm
for the optimal polygon triangulation using CUDA C. We
have used NVIDIA GeForce GTX 680 with 1536 process-
ing cores (8 Streaming Multiprocessors which have 192 pro-
cessing cores) running in 1.058GHz and 2GB memory. For
the purpose of estimating the speedup of our GPU imple-
mentation, we have also implemented a conventional soft-
ware approach of dynamic programming for the optimal
polygon triangulation using GNU C. We have used Intel
Core i7 870 running in 2.93GHz and 8GB memory to run
the sequential algorithm for dynamic programming.

Table 1 shows the computing time in seconds for an
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8192-gon. Table 1 (a) shows the computing time of TB(t)
for t = 32, 64, 128, 256, 512, 1024. The computing time is
evaluated for the naive arrangement and the sliding arrange-
ment. For example, if we execute TB(32) for all stages on
the naive arrangement, the computing time is 113.14 sec-
onds. TB(64) runs in 13.92 seconds on the sliding arrange-
ment and thus, the sliding arrangement can attain a speedup
of factor 8.13.

Table 1 (b) shows the computing time of BB(b,t) for
b = 1, 2, 4, 8 and t = 32, 64, 128, 256, 512, 1024. Again,
let us select b and t that minimize the computing time.
BB(1, 32) takes 28.33 seconds for the naive arrangement
and BB(1, 256) runs in 5.94 seconds for the mirroring ar-
rangement. Thus, the mirroring arrangement can attain a
speedup of factor 4.77.

For each of the two methods and for each of the stages,
we select best values of the number t of threads in each block
and the number b of blocks. Also, the sliding arrangement
is used for TB and the mirroring arrangement is used for
BB. Recall that we can use different methods with different
parameters for each stage independently. To attain the mini-
mum computing time, we should use two methods shown in
Table 2.

Table 2 The optimal combination of two methods for different size of
polygons

n TB BB
128 — Stages 0-126
256 Stages 0-7 Stages 8-254
512 Stages 0-19 Stages 20-510
1024 Stages 0-43 Stages 44-1022
2048 Stages 0-82 Stages 83-2046
4096 Stages 0-199 Stages 200-4094
8192 Stages 0-923 Stages 924-8190

Table 3 shows the computing time using the optimal
combination of two methods. Note that if we use two meth-
ods for each stage in this way, we need to convert the slid-
ing arrangement into the mirroring arrangement. The com-
puting time in the table includes the conversion time if the
conversion is necessary. This conversion takes only 7.80
mseconds for an 8192-gon. Readers can find that the con-
version time is much smaller than the total execution time.
Also, smaller polygons denote the same tendency of it. For
an 8192-gon, the best total computing time of our imple-
mentation for the optimal polygon triangulation problem
is 5.57 seconds. The sequential implementation used Intel
Core i7 870 runs in 1939.02 seconds. Thus, our best GPU
implementation attains a speedup factor of 348.02. Recall
that the computing time does not depend on edge weights
shown in the above section. Therefore, for another polygon
whose weights are different, we can obtain almost the same
speedup factor as that of the above experiment.

We note that since the timing of change of the methods
depends on the number of sides of a polygon and the exe-
cution environment, if the number of sides of a polygon is
known, once the methods are executed for each stage, the

appropriate timing can be determined by the running time.

6. Concluding remarks

In this paper, we have proposed an implementation of the
dynamic programming algorithm for an optimal polygon tri-
angulation on the GPU. Our implementation selects the best
methods, parameters, and data arrangement for each stage to
obtain the best performance. The experimental results show
that our implementation solves the optimal polygon trian-
gulation problem for a convex 8192-gon in 5.57 seconds on
the NVIDIA GeForce GTX 680, while a conventional CPU
implementation runs in 1939.02 seconds. Thus, our GPU
implementation attains a speedup factor of 348.02.

In the future work, we plan to apply our proposed ap-
proach to other problems of dynamic programming. Our
proposed approach basically can be applied to other prob-
lems that utilize memorization such as the matrix-chain mul-
tiplication problem, the longest common subsequence prob-
lem, etc [1]. Applying our idea to them, optimal granularity
of parallelism should be obtained. However, since mem-
ory access pattern and utilized memory size differ for each
problem, in order to obtain the further acceleration, it is nec-
essary to consider programming issues of the GPU system
as mentioned in Section 3.

Also, we plan to apply our proposed method to the
algebraic dynamic programming (ADP) [19]. ADP is a
new technique for dynamic programming. Compared to
the usual style of dynamic programming, ADP provides a
higher level of abstraction, helping to solve more sophisti-
cated problems. Therefore, applying our idea to the ADP,
we will accelerate the computation of the various problems
based on the ADP.
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