
Simple and Fast Parallel Algorithms for the Voronoi
Maps and the Euclidean Distance Map, with GPU

implementations
Takumi Honda, Shinnosuke Yamamoto, Hiroaki Honda, Koji Nakano, Yasuaki Ito

Department of Information Engineering
Hiroshima University

Kagamiyama 1-4-1, Higashi Hiroshima, 739-8527 Japan

Abstract—The complete Voronoi map of a binary image with
black and white pixels is a matrix of the same size such that each
element is the closest black pixel of the corresponding pixel. The
complete Voronoi map visualizes the influence region of each
black pixel. However, each region may not be connected due
to exclave pixels. The connected Voronoi map is a modification
of the complete Voronoi map so that all regions are connected.
The Euclidean distance map of a binary image is a matrix, in
which each element is the distance to the closest black pixel.
It has many applications of image processing such as dilation,
erosion, deblurring effects, skeletonizing and matching. The main
contribution of this paper is to present simple and fast parallel
algorithms for computing the complete/connected Voronoi maps
and the Euclidean distance map and implement them in the
GPU. Our parallel algorithm first computes the mixed Voronoi
map, which is a mixture of the complete and connected Voronoi
maps, and then converts it into the complete/connected Voronoi
by exposing/hiding all exclave pixels. After that, the complete
Voronoi map is converted into the Euclidean distance map by
computing the distance to the closest black pixel for every pixel in
an obvious way. The experimental results on GeForce GTX 1080
GPU show that the computing time for these conversions is
relatively small. The throughput of our GPU implementation
for computing the Euclidean distance maps of 2K×2K binary
images is up to 2.08 times larger than the previously published
best GPU implementation, and up to 172 times larger than CPU
implementation using Intel Core i7-4790.

I. INTRODUCTION

The GPU (Graphics Processing Unit) is a specialized circuit
designed to accelerate computation for building and manipulat-
ing images [1]–[3]. Latest GPUs are designed for general pur-
pose computing and can perform computation in applications
traditionally handled by the CPU. Hence, GPUs have recently
attracted the attention of many application developers [1].
NVIDIA provides a parallel computing architecture called
CUDA (Compute Unified Device Architecture) [4], [5], the
computing engine for NVIDIA GPUs. CUDA gives developers
access to the virtual instruction set and memory of the parallel
computational elements in NVIDIA GPUs. In many cases,
GPUs are more efficient than multicore processors [6], since
they have thousands of processor cores and very high memory
bandwidth. However, memory access to the global memory
by threads must be coalesced to fully utilize high memory
bandwidth.

Voronoi map with Voronoi diagramEuclidean distance map

1.02.0 0.0 1.0 2.0 3.0

1.42.2 1.0 1.4

2.22.8 2.0 1.4

2.0 2.2

2.02.2 2.0 1.0

1.0 1.4

1.01.4 1.4 1.4

0.0 1.0

0.01.0 1.0 2.0

1.0 1.4

2.0 2.2

Fig. 1. The Euclidean distance map and the Voronoi map with the Voronoi
diagram for a 6× 6 binary image with three black pixels

Suppose that a binary image of
√
n ×
√
n pixels, each of

which takes 0 (white) or 1 (black), is given. The Euclidean
distance map is a matrix of the same size such that each
element is the distance to the closest black pixel. It has many
applications in the area of image processing such as dilation,
erosion, deblurring effects, skeletonizing and matching. Fig-
ure 1 shows the Euclidean distance map of a 6 × 6 binary
image with three black pixels.

The Voronoi diagram of a set P of points in a plain is
a partitioning of a plain into regions called Voronoi cells,
each of which consists of all points closest to a point p
(∈ P) over all points in P . The Voronoi map (or the complete
Voronoi map) of a binary image is a projection of the Voronoi
diagram, that is, a matrix of the same size, in which each
element is the closest black pixel. Hence, the complete Voronoi
map visualizes regions of influence and adjacency relationship
of black pixels. However, the complete Voronoi map may
have an exclave pixel as illustrated in Figure 2. Although
the closest pixel of the exclave pixel in the figure is black
pixel b, it is not adjacent to the other pixels in the Voronoi
cell of black pixel b. A cluster of multiple exclave pixels
may appear if the size of an image is large. Since exclave
pixels seem to be noise, we should hide all exclave pixels
if such noise is unfavorable. For this purpose, elements in
the complete Voronoi map corresponding to exclave pixels are

exclave

e

d

c

a

b

Fig. 2. The Voronoi diagram and the complete Voronoi map of a 16 × 16
binary image

replaced by those of neighboring pixels so that all pixels in
the same Voronoi cell are connected. We call such Voronoi
map the connected Voronoi map. For example, the element of
the exclave pixel in Figure 2 is change to black pixel a or e.

The main contribution of this paper is to present simple and
fast parallel algorithms for computing the complete/connected
Voronoi maps and the Euclidean distance map, and implement
it in the GPU. Our parallel algorithm first computes the
mixed Voronoi map, which are a mixture of the complete and
connected Voronoi maps by a simple operation. After that, it
is converted it into the complete/connected Voronoi maps by
exposing/hiding all exclave pixels. In practice, the number of
exclave pixels is very small. Hence, the computation cost of
these conversions is very small. Once the complete Voronoi
map is obtained, the Euclidean distance map can be computed
in an obvious way.

Many algorithms for computing the Euclidean distance
map have been proposed in the past, such as sequential
algorithms [7]–[10] and parallel algorithms [11]–[15]. Breu et
al. [7] and Chen et al. [8], [9] have presented O(n)-time se-
quential algorithm for computing the Euclidean distance map.
Since all pixels must be read at least once, these sequential
algorithms with time complexity of O(n) is optimal. Roughly
at the same time, Hirata [10] presented a simpler O(n)-
time sequential algorithm to compute the distance map for
various distance metrics including Euclidean, four-neighbor,
eight-neighbor, chamfer, and octagonal. On the other hand,
for accelerating sequential ones, numerous parallel algorithms
have been developed for various parallel model. Lee et al. [16]
presented an O(log2 n)-time algorithm using n processors on
the EREW PRAM. Pavel and Akl [13] presented an algorithm
running in O(log n) time and using n2 processors on the

EREW PRAM. Clearly, these two algorithms are not work-
optimal. Fujiwara et al. [11] have presented a work-optimal
algorithm running in O(log n) time using n

logn processors on
the EREW PRAM and in O(logn

log logn) time using n log logn
logn

processors on the CRCW PRAM. Later, Hayashi et al. [12]
have exhibited a more efficient algorithm running in O(log n)
time using n

logn processors on the EREW PRAM and in
O(log log n) time using n

log logn processors on the PRAM.
Since the product of the computing time and the number of
processors is O(n), these algorithms are work optimal. Also,
it was proved that the computing time cannot be improved as
long as work optimality is satisfied, these algorithms are also
work optimal. Our parallel algorithm takes a different new
approach to compute the Euclidean distance map.

Rong et al. [17] has been presented the jumping flooding
algorithm (JFA), that computes the Voronoi map and the
Euclidean distance map on the GPU. The jumping flooding
algorithm diffuses the closest black pixel in log

√
n steps such

that each step i (1 ≤ i ≤ log
√
n) diffuses the closest pixel

to 8 pixels in relative positions ({±
√
n

2i , 0}, {±
√
n

2i , 0}). Since
memory access is regular and coalesced, the jump flooding
algorithm attains very high memory bandwidth. However, it
totally performs O(n log n) memory access operations, it runs
fast only if the image size is small, say at most 512 × 512
pixels. Also, the resulting Voronoi map and the Euclidean
distance map have unexpected errors and they are just approx-
imated results. Schneider et al. [18] has presented a sweep line
algorithm for computing the Euclidean distance map and im-
plemented in a GPU. Since it performs O(n) memory access
operations, it is optimal. However, the resulting Euclidean dis-
tance map still has errors. Man et al. [19], [20] have presented
a GPU implementation of the work-time optimal algorithm for
computing the Euclidean distance map shown in [12]. In their
implementation, each of

√
n threads is assigned to a column

and it computes the column-wise closest black pixel within the
same column. After that, a thread is assigned a row and the
Euclidean distance map in the assigned row is computed using
the column-wise closest black pixels computed in the previous
step. This implementation has several drawbacks. First, for
coalesced memory access in the row-wise computation, matrix
transposing must be performed before and after the row-wise
computation. Also, a large stack is necessary for the row-
wise Euclidean distance map computation by a thread. More
specifically,

√
n stacks must be used and memory access to

the stacks by
√
n threads is not coalesced. Cao et al. [21] has

presented a more sophisticated GPU implementation called
Parallel Banding Algorithm (PBA), which is also based on
the work-time optimal algorithm in [12]. Basically, the PBA
partitions computation into bands. The band-wise computation
is performed, and the results are combined to use more
threads. Thus, the PBA has larger parallelism and runs faster
than a simple GPU implementation [19], [20]. However, it
still performs complicated stack operations and non-coalesced
access to the global memory.

We have implemented our parallel algorithm for computing

the Voronoi maps and the Euclidean distance map and eval-
uated the performance on GeForce GTX 1080 GPU. For a
single binary image of size 16K × 16K, our implementation
is 1.12-1.54 times faster than the PBA on the same GPU
and 118-132 times faster than a sequential algorithm running
on Intel Core i7-4790 CPU. For computing the Euclidean
distance map, the throughput of our GPU implementation is
1.43- 2.08 times larger than the PBA, and 121-172 times faster
than CPU implementation. Thus, our implementation achieves
better performance than the previously published best GPU im-
plementation, although it is much simpler. Further, the warp-
wise asynchronous sweep, which we have developed has few
synchronization overhead and contributes high acceleration of
the computation.

This paper is organized as follows. In Section II, we define
the Voronoi maps and the Euclidean distance map, and discuss
condition to have exclave pixels. We then go on to show
parallel algorithms for computing the Voronoi maps and the
Euclidean distance map in Section III. Section IV presents our
GPU implementations for computing the Voronoi maps and the
Euclidean distance map. Finally, we show experimental results
using the GPU in Section V. Section VI concludes our work.

II. VORONOI MAPS AND EUCLIDEAN DISTANCE MAP

Let dist(p, q) denote the Euclidean distance of two points
p and q in a plane. For a set P of points in a plain, the
Voronoi diagram V is a partitioning of a plain into regions
V (p) (p ∈ P) called Voronoi cells, each of which consists of
all points closest to p over all points in P , that is,

V (p) = {q ∈ Q | dist(p, q) ≤ dist(q′, q) for all q′ ∈ P},

where Q is a set of all points in a plain. The boundary
of Voronoi cell V (p) for each point p is determined line
segments, each of which is a perpendicular bisector of p and
a neighbor point in P . We call a line segment representing
the boundary of a Voronoi cell a Voronoi edge and a point
connecting two or more Voronoi edges a Voronoi vertex.

The Voronoi map (or the complete Voronoi map) is a
projection of the Voronoi diagram in a binary image. Let B be
a binary image of size

√
n ×
√
n such that the value B(i, j)

of each pixel (i, j) (0 ≤ i, j ≤
√
n − 1) takes 0 (white) or 1

(black). The complete Voronoi map C of a binary image B is
determined by the Voronoi diagram V of a set of black points,
P = {(i, j) | (i, j) is black}. More specifically, each pixel
(i, j) is assigned a label C(i, j), which is the closest black
pixel of pixel (i, j). Thus, (i, j) ∈ V (C(i, j)) is satisfied for
all pixels (i, j) (0 ≤ i, j ≤

√
n−1). We assume that, if a pixel

has two or more equidistant closest black pixels, the earliest
black pixel among them in row major order is the closest.
Figure 2 shows the complete Voronoi map C of a 16 × 16
binary image, which has five black pixels a, b, c, d, and e
and the other pixels are white. Pixels are partitioned into five
regions, each of which corresponds to the Voronoi cell of a
black pixel. It also illustrates the Voronoi diagram V of the
five points. The Euclidean distance map E of a binary image
B is a matrix E such that each E(i, j) is the distance to the

θ1

θ2

C(a)

C(b)

C(c)

β

γα

lac

lab

Fig. 3. Necessary condition for having exclave pixels

closest black pixel of (i, j). Since C(i, j) is the closest black
pixel of (i, j), we have E(i, j) = dist((i, j), C(i, j)) and E
can be computed from the complete Voronoi map C directly.

As we can see in Figure 2, the complete Voronoi map may
have an exclave pixel, which is not included in the connected
region of a Voronoi cell. More formally, an exclave pixel is
defined as follows. We assume that two pixels (i, j) and (i′, j′)
are neighbors if |i− i′| ≤ 1 and |j− j′| ≤ 1. Thus, each pixel
has at most eight neighbors. A path of pixels is a sequence of
pixels p0, p1, . . . , pk such that pi and pi+1 (0 ≤ i ≤ k−1) are
neighbors. Let C be the complete Voronoi map of an image
B. A pixel p is a connected pixel if there exists a path of
pixels p0(= p), p1, p2, . . . , pk such that pk is a black pixel
and C(pi) = pk for all i (0 ≤ i ≤ k). A pixel p is an exclave
pixel if it is not a connected pixel.

Let us see a condition to have exclave pixels. Exclave pixels
may appear in the complete Voronoi map C around Voronoi
points. Figure 3 illustrates an example of such three Voronoi
cells C(a), C(b), and C(c). In this figure, two Voronoi edges
lab and lac lie between pixels β (∈ C(b)) and γ (∈ C(c)) and
so α (∈ C(a)) is an exclave pixel. Clearly, both θ1 > 0 and
θ2 < π

4 are satisfied. In general, for some integer i (0 ≤ i ≤ 7),
both θ1 > π

4 i and θ2 < π
4 (i + 1) must be satisfied to have

an exclave pixel. Note that, even if this condition is satisfied,
exclave pixels may not exist. These conditions are necessary
to have exclave pixels. Also, it is possible to have two or more
exclave pixels if the angle θ2 − θ1 is very small.

In some applications, a connected Voronoi map F , which
hides all exclave pixels, are expected. The connected Voronoi
map F of a binary image B is obtained by modifying the
complete Voronoi map C such that, every exclave pixel is
replaced by a non-exclave neighbor pixel. In other words,
F (i, j) = C(i, j) if pixel (i, j) is not an exclave pixel.
Otherwise, F (i, j) = C(i′, j′) such that (i′, j′) is a non-
exclave neighbor pixel of (i, j). For example, an exclave pixel
in Figure 2 is labeled as a or e. The mixed Voronoi map M is
a mixture of the complete Voronoi map C and the connected
Voronoi map F . It is a map satisfying M(i, j) = C(i, j) or
F (i, j) for all pixels (i, j).

III. PARALLEL ALGORITHMS FOR VORONOI MAPS AND
EUCLIDEAN DISTANCE MAP

We first show a very simple parallel algorithms for com-
puting the mixed Voronoi map of a binary image. We will
show that, the mixed Voronoi map can be converted into the
connected Voronoi map with small computational cost.

A. Simple parallel algorithm for the mixed Voronoi map

Our algorithm basically performs sweep operations pre-
sented in [18]. The parallel algorithm performs four sweep
operations, down sweep, up sweep, left sweep, and right sweep.
These operations are almost the same and the difference is the
direction of sweep. Let closest(p, q1, q2, . . .) be a function for
pixels p, q1, q2, . . . such that it finds and returns the closest
pixel of p in the remaining pixels. In other words, if it returns
qi, then dist(p, qi) ≤ dist(p, qj) is satisfied for every j ≥ 1.
The down sweep computes the angle restricted closest black
pixel of every pixel with angle upward 90 degree. For this
computation, angle restricted close black pixels are propagated
downward 90 degree. A parallel algorithm for the down sweep
is described below. It stores the angle restricted closest black
pixel of (i, j) in Md(i, j) when it terminates. We use Md’s
outside of index range such as Md(−1, 0) to avoid special
handling for boundary pixels. We assume that all Md(i, j)’s
including them store pixel (+∞,+∞), initially.

[Down sweep]
for i← 0 to

√
n− 1 do

for j ← 0 to
√
n− 1 do in parallel

if B(i, j) = 1 then Md(i, j)← (i, j)
else Md(i, j)← closest((i, j),Md(i− 1, j − 1),

Md(i− 1, j),Md(i− 1, j + 1))

Figure 4 shows the pixels stored in Md(i, j) after the down
sweep terminates. We can see that each black pixel is propa-
gated downward 90 degree.

Let Mu, Ml and Mr be arrays obtained by the
up sweep, the left sweep and the right sweep, re-
spectively. The mixed Voronoi map M can be ob-
tained by pixel-wise minimum of the four sweep op-
erations. More specifically, by performing M(i, j) ←
closest((i, j),Md(i, j),Mu(i, j),Ml(i, j),Mr(i, j)) for all
pixels (i, j), we can obtain the mixed Voronoi map M . We
call this algorithm the 4-directional sweep.

In the 4-directional sweep, Md(i, j), Mu(i, j), Ml(i, j),
and Mr(i, j) store the angle restricted closest black pixels
for four directions of 90 degree, respectively, if (i, j) is not
an exclave pixel. Thus, the 4-directional sweep computes the
closest black pixel of every non-exclave pixel correctly. We
will show that exclave pixels may or may not be hidden
in the resulting Voronoi map by the 4-directional sweep. In
other words, M(i, j) for an exclave pixel (i, j) stores the
closest pixel of (i, j) or M(i′, j′) of a non-exclave neighbor
pixel (i′, j′) of (i, j). Suppose that the 4-directional sweep is
executed for the binary image in Figure 2. Figure 4 shows
the resulting black pixels stored in Md computed by the down
sweep. The value of Md for the exclave pixel is black pixel b.

e

d

b c

a

exclave

Fig. 4. Pixels stored in Md(i, j) by the down sweep for the same binary
image of Figure 2

a

b

c

hidden exclave

Fig. 5. The resulting Voronoi map by the down sweep: an exclave pixel
disappears

Since black pixel b is the closest pixel over all black pixels,
the value of M for the exclave pixel is also b. Thus, an exclave
pixel is not hidden in M .

Next, we will show an example, in which an exclave pixel
is hidden. Figure 5 shows the resulting Voronoi map by the
down sweep of a binary image with black pixels a, b, and
c. Although the closest black pixel of the exclave pixel is b,
black pixel a is stored as the closest pixel for it by the down
sweep. Also, the 90 degree angles emitted from three black

pixels by the up sweep, the left sweep, and the right sweep
do not include the exclave pixel and Mu, Ml, and Mr of it
are (+∞,+∞). Thus, in the resulting Voronoi map by the 4-
directional sweep, black pixel a is assigned as the closest pixel
of the exclave pixel. Therefore, the exclave pixel in Figure 5
is hidden by the 4-directional sweep.

Let us evaluate the performance of the 4-directional sweep.
For simplicity, we assume the EREW PRAM. Each sweep
including the down sweep runs O(

√
n) time using

√
n pro-

cessors. After that, the closest pixel of Md(i, j), Mu(i, j),
Ml(i, j), and Mr(i, j) for every (i, j) can also be computed
in O(

√
n) time using

√
n processors. Thus, we have,

Theorem 1: The 4-directional sweep computes the mixed
Voronoi map in O(

√
n) time using

√
n processors on the

EREW PRAM.

B. Mixed-to-complete conversion of Voronoi maps

Exclave pixels in a mixed Voronoi map M may be hidden
around Voronoi points. We find all hidden exclave pixels and
assigns the correct closest black pixels for them to obtain
the complete Voronoi map C. We first find Voronoi points
by reading M for every set S(i, j) = {M(i, j),M(i, j +
1),M(i + 1, j),M(i + 1, j + 1)} (0 ≤ i, j ≤

√
n − 2) of

2×2 pixels. If a set S(i, j) includes three or four black pixels,
the corresponding three or four Voronoi cells are adjacent and
the Voronoi points for them can be computed. For example,
suppose that S(i, j) has three pixels a, b, and c as illustrated
in Figure 6. Let lab and lac be Voronoi edges. In this figure,
two Voronoi edges lab and lac lie between pixels (i, j+1) and
(i+1, j+1). In Case 1, (i, j+2) the Voronoi point connecting
lab and lac is in the right side of column j + 2. If this is the
case, pixel (i, j+2) may be a hidden exclave pixel. Further, if
the angle of lab and lac is very small, multiple exclave pixels
may be hidden. In Case 2, (i + 1, j) is an appearing exclave
pixels. Thus, (i + 2, j) is also an appearing exclave pixel by
the left sweep. So, if the Voronoi point is in the left side
of column j, no hidden exclave pixel exists. Since we have
positions of three black pixels a, b, and c, we can compute
line segments lab and lac, and the Voronoi point connecting
them in an obvious way. If S(i, j) includes four black pixels,
we can find all hidden exclave pixels for them by executing
all four sets of 3 pixels in S(i, j).

To find all hidden exclave pixels in parallel, we assign one
processor for each S(i, j) (0 ≤ i, j ≤

√
n− 2). If S(i, j) has

less than 3 black pixels, the processor terminates. Otherwise,
it finds hidden exclave pixels and assigns the correct black
pixel to it one by one. If it finds an appearing exclave pixel, it
terminates. Since a processor assigned to S(i, j) that includes
the appearing exclave pixel finds remaining hidden exclave
pixels, a processor that finds an appearing exclave pixel should
be terminated to avoid redundant computation.

In this parallel algorithm, (
√
n − 1)2 processors are used.

Let h be the maximum number of consecutive hidden exclave
pixels. In practice, h is very small. Since the total number of
exclave pixels is less than n, we have,

Lemma 2: The mixed Voronoi map of size
√
n ×
√
n can

be converted into the complete Voronoi map in O(h) time and
O(n) total work using (

√
n− 1)2 processors.

C. Mixed-to-connected conversion of Voronoi maps
We will show how we convert a mixed Voronoi map into

the connected Voronoi map. For this purpose, we hide all
exclave pixels in the mixed Voronoi map. We can use the
same technique in the mixed-to-complete conversion to find all
appearing exclave pixels. However, the computation of finding
exclave pixels is a bit costly. We will show a simpler method
for mixed-to-connected conversion.

We use n processors and each processor is assigned to a
pixel (i, j) (0 ≤ i, j ≤

√
n − 1) and works for determining

if (i, j) is an appearing exclave pixel. We use Figure 7 to
show how it can be determined. Let (i, j) be a pixel with
M(i, j) = (i′, j′), that is, the 4-directional sweep assigns
black pixel (i′, j′) to pixel (i, j). As illustrated in Figure 7, we
assume that (i′, j′) is in the upper left of (i, j), that is, i′ < i
and j′ < j. A processor reads M(i − 1, j − 1), M(i − 1, j),
and M(i, j − 1) and if at least one of them is (i′, j′) then the
processor terminates. Otherwise, (i, j) is an appearing exclave
pixel that should be hidden. If this is the case, the processor
chooses the closest pixel of M(i− 1, j− 1), M(i− 1, j), and
M(i, j − 1), and writes it in M(i, j). Further, the processor
reads M(i, j + 1), M(i + 1, j + 1), and M(i, j + 1) and if
one of them is (i′, j′), then it is also appearing exclave pixel
that should be hidden. For example, if M(i, j + 1) = (i′, j′)
as illustrated in Figure 7, then (i, j + 1) is a exclave pixel.
Note that the processor assigned to (i, j + 1) has terminated,
because M(i, j) = (i′, j′). Thus, the processor assigned to
(i, j) performs the same procedure for hiding exclave pixel
(i, j + 1). We repeat the same procedure for three neighbor
pixels in the lower right of (i, j+1), until all appearing exclave
pixels from (i, j) are hidden.

Let e be the number of appearing exclave pixels. In practice,
e is very small. Since O(1) operation is performed for each
appearing exclave pixel, we have,

Lemma 3: The mixed Voronoi map of size
√
n ×
√
n can

be converted into the complete Voronoi map in O(e) time and
O(n) total work using n processors.

IV. GPU IMPLEMENTATIONS FOR THE VORONOI MAPS
AND THE EUCLIDEAN DISTANCE MAP

We assume that input binary images are stored in the global
memory of the GPU. The pixel values are bit-packed, that is,
the binary values of 32 consecutive pixels in a row is stored
in a 32-bit word. Thus, a binary image of size

√
n ×
√
n is

stored in an array of 32-bit words of size n
32 . For efficient

global memory access, we assume that words are arranged in
column major order as illustrated in Figure 8. A square block
of 32 × 32 pixels are in consecutive addresses of the array,
global memory access to it is coalesced.

A. The 4-directional sweep
We will show three implementation methods for the 4-

directional sweep called single-block (synchronous) sweep,

lab

lac

V (b)

V (a)

V (c)

Case 1

V (b)

V (c)

i

i+ 1

j j + 1 j + 2

V (a)

j − 1 j j + 2

Voronoi points

Case 2

i

i+ 1

lab

lac

possibly hidden exclave pixel

appearing exclave pixels

Fig. 6. Finding hidden exclave pixels for three Voronoi cells V (a), V (b), and V (C)

M(i, j) = (i′, j′)
(i, j)

Fig. 7. Hide an exclave pixel to obtain the connected Voronoi map

32 pixels √
n pixels

0
n
32

−
√
n

1
2
3

√
n− 1

√
n√

n+ 1√
n+ 2√
n+ 3

2
√
n− 1

n
32

−
√
n+ 1

n
32

−
√
n+ 2

n
32

−
√
n+ 3

n
32

− 1

√
n pixels

Fig. 8. The column major order bit-packed arrangement of a
√
n×

√
n binary

image

multiple-block (synchronous) sweep, and warp-wise (asyn-
chronous) sweep. The single-block sweep uses one CUDA
block for each of the down, up, left, and right sweeps. Since
barrier synchronization is necessary after each row (or each
column) is computed, syncthreads(), which synchronizes
all threads in the same CUDA block, is executed. The 4-
directional sweep uses only four CUDA blocks for a binary
image. Since only four streaming processors are used for a
binary image and the other streaming processors are idle, we
can not get enough acceleration performance.

The multiple-block sweep uses multiple CUDA blocks for
each of the down, up, left, and right sweeps. Since a lot of
CUDA blocks can be invoked, all streaming processors are
assigned CUDA blocks and cores in them are fully used.
However, separated CUDA kernel must be called for each row
(or each column). Hence, non-negligible large overhead for
calling a CUDA kernel is imposed many times.

The warp-wise sweep assigns a warp of 32 threads to

32 pixels √
n pixels

d[0, 0] d[0, 1] d[0,
√
n

32
− 1]

d[1, 0] d[1, 1] d[1,
√
n

32
− 1]

d[
√
n− 1, 0] d[

√
n− 1, 1] d[

√
n − 1,

√
n

32
− 1]

√
n pixels

Fig. 9.
√
n×

√
n

32
tasks for the down sweep

compute the closest black pixels of 32 pixels in a row (or
a column). We call the computation for consecutive 32 pixels
a task. Clearly, the 4-directional sweep involves n

32 · 4 = n
8

tasks. We have developed the dynamic soft synchronization
technique, which uses a counter in the global memory to
arrange a warp to a task. Every invoked warp performs atomic-
increment for the counter and performs the task corresponding
to the value of the counter. It repeats this operation until no
more unexecuted tasks exist. Since barrier synchronization us-
ing syncthreads() or separated kernel calls is not necessary,
the warp-wise sweep has no barrier synchronization overhead.

We will explain more details for these three implemen-
tations for the 4-directional sweep. For later reference, let
d[i, j] denote the task to compute Md(i, 32j),Md(i, 32j +
1), . . . ,Md(i, 32j + 31) in the down sweep as illustrated in
Figure 9. Similarly, we define u[i, j], l[i, j], and r[i, j] for
the up/left/right sweeps, respectively. Clearly, to start task
α[i, j], (α ∈ {d, u, l, r}), tasks α[i− 1, j − 1], α[i− 1, j], and
α[i− 1, j + 1] (if exist) must be completed.

B. Single-block (synchronous) sweep

We show how the down sweep is implemented by the single-
block sweep. The other sweeps can be implemented in the
same way.

We first assume that
√
n ≤ 1024. The down sweep uses

one CUDA block with
√
n threads. Warp j (0 ≤ j <

√
n

32)
performs task d[0, j], d[1, j], . . ., d[

√
n, j] in turn. When task

d[i, j] starts, tasks d[i−1, j−1], d[i−1, j], and d[i−1, j+1]

must be computed. Thus, when the CUDA block completes
tasks d[i, 0], d[i, 1], . . ., d[i,

√
n

32 − 1] (0 ≤ i ≤
√
n − 2), all

threads execute syncthreads() for barrier synchronization.
Each thread j (0 ≤ j ≤

√
n − 1) uses a 32-bit register m to

store Md(i, j). Hence, to compute Md(i+1, j), thread j must
read the values of register m of thread j − 1 and j + 1. This
can be done by warp shuffle function shfl(), which copies
the value stored in a 32-bit register of a different thread in
the same warp very efficiently. However, the first and the last
threads in a warp must read the values of register m of a
thread in different warp. This can be done through the shared
memory. More specifically, threads 0, 32, 64, . . . and 31, 63,
95, . . . write the values of m to the shared memory after the
angle-restricted closest black pixels for tasks of a particular
row is computed. They are read by the first/last threads in a
different warp for tasks of the following row.

We should note several implementation issues in terms
of memory access both for the binary image B and for
Md,Mu,Ml, and Mr stored in the global memory. Since B
is stored in the column major order bit-packed arrangement
(Figure 8), 32 threads in a warp read only one 32-bit word for
a task in the down/up sweep. Also, for a task in the left/right
sweep, 32 threads in a warp read consecutive 32 32-bit word.
Thus, the 4-directional sweep performs coalesced memory
access to B. We assume that Md(i, j) and Mu(i, j) stored
in the ((i ·

√
n

32 +j)-th 32-bit word (i.e. row major order) in the
global memory space for Md and Mu, respectively. Hence, we
can guarantee that memory access to Md/Mu by each task is
coalesced. On the other hand, Ml(i, j) and Mr(i, j) stored in
the (i+j ·

√
n

32)-th 32-bit word (i.e. column major order) in the
global memory space for Mr and Ml, respectively. Similarly,
memory access to Md/Mu by each task is coalesced.

If
√
n > 1024, then each warp must be assigned multiple

tasks in each row. We assign tasks d[i, pj], d[i, pj + 1], . . .,
d[i, pj+p−1] to warp j (0 ≤ j ≤ 31), where p =

√
n

1024 . Since
each thread works for p columns, it uses p 32-bit registers to
store the closest black pixels. Each warp j performs tasks
d[i, pj], d[i, pj + 1], . . ., d[i, pj + p− 1] in turn.

C. Multiple-block (synchronous) sweep

We should use multiple CUDA blocks for each sweep
for full utilization of streaming multiprocessors. Let w be
the number of warps of a CUDA block. Since each CUDA
block has 32w threads, we use p =

√
n

32w CUDA blocks for
each sweep. For barrier synchronization, we need one CUDA
kernel must be called for each row. Thus, each kernel call i
(0 ≤ i ≤

√
n − 1) invokes p CUDA blocks for each sweep,

and CUDA block j (0 ≤ j ≤ p− 1) works for tasks d[i, wj],
d[i, wj + 1], . . ., d[i, wj + w − 1]. The resulting values of
Md(i, 32wj),Md(i, 32wj + 1), . . ., Md(i, 32wj + 32w − 1)
are written in the global memory.

D. Warp-wise (asynchronous) sweep

We assign serial numbers for all tasks of the 4-directional
sweep, such that each task d[i, j], u[i, j], r[i, j], l[i, j] is as-
signed serial numbers 4

√
n

32 i+j, 4
√
n

32 i+
√
n

32 +j, 4
√
n

32 i+2
√
n

32 +

j, and 4
√
n

32 i+3
√
n

32 +j, respectively. Let t[k] (0 ≤ i ≤ 4 n
32−1)

denote the task with serial number k. The reader should refer
to Figure 10 illustrating serial numbers assigned to tasks for a
128× 128 binary image. We can see that 4× 128×128

32 = 2048
tasks are assigned serial numbers so that tasks computed
earlier have smaller serial numbers.

We use a zero-initialized counter c arranged in the global
memory to assign a task to a warp. A CUDA kernel call
invokes 4 ·

√
n

32 warps. The first thread of every warp performs
atomicADD(&c,1), which increments the value of c exclavely
and returns the old value before addition. If the return value
of atomicADD is k is smaller than 4 · n

32 (the total number
of tasks), then the warp performs task t[k]. Note that, before
performing task t[k], it must be checked if all necessary angle-
restricted closest pixel are computed by three tasks. After
the warp completes task t[k], it repeats the same procedure
until the return value of atomicADD(&c,1) is larger than or
equal to 4 · n

32 , which is the total number of tasks. Since
atomicADD(&c,1) by the first threads of warps return 0, 1,
2, . . ., all 4 · n

32 tasks are performed in turn.
Clearly, only one CUDA kernel is called for the warp-wise

sweep, and so it has no overhead by separated kernel calls.
However, each warp repeatedly reads the the resulting values
of three tasks to perform an assigned task if they are not
finished. To minimize the overhead for this iteration, 4

√
n

32
warps are invoked for the 4-directional sweep. For example,
for a 128×128 binary image, we use 16 warps, say, 8 CUDA
blocks with 2 warps each. Initially, they are arranged 16 tasks
from 0 to 15. If one of the warps completes the assigned task,
then it is rearranged task 16. It repeatedly reads the resulting
values of tasks 0 and 1 which are necessary to perform task
16, until these tasks are completed. Since tasks 0 and 1 are
assigned to warps at the beginning, with high probability,
tasks 0 and 1 are completed when the warp start executing
task 16.

The reader may think that such dynamic task allocation
using the counter c is not necessary and fixed task allocation
is more efficient. For example, for a 128× 128 binary image
in Figure 10, each warp i (0 ≤ i ≤ 15) performs tasks i,
i+ 16, i+ 32, . . . in turn. However, the algorithm using fixed
task allocation may stall due to the deadlock. In CUDA, it
is not guaranteed that all CUDA blocks are dispatched to
streaming processors. If one of them is not dispatched, this
algorithm never terminates. On the other hand, the dynamic
task allocation using the counter c works correctly, even if less
than 4

√
n

32 warps are dispatched to streaming processors.

E. Combining four matrix Md, Mu, Ml, and Mr

After Md, Mu, Ml, and Mr are com-
puted, we combine them to obtain the mixed
Voronoi map M by computing M(i, j) ←
closest((i, j),Md(i, j),Mu(i, j),Ml(i, j),Mr(i, j)) for
all (i, j). We partition M into

√
n

32 ×
√
n

32 submatrices of
size 32 × 32 each. A CUDA block with 32 × 32 threads
is assigned to a submatrix and each thread computes an
element. For this purpose, each thread (i, j) (0 ≤ i, j ≤ 31)

0 1 2 3

16 17 18 19

32 33 34 35

48 49 50 51 36 37 38 39

20 21 22 23

4 5 6 7

52 53 54 55

40

41

42

43

24

25

26

27

8

9

10

11

down sweep up sweep left sweep right sweep

12

13

14

15

28

29

30

31

44

45

46

47 63

62

61

60

59

58

57

56

Fig. 10. Serial numbers assigned to tasks of the 4-directional sweep for a 128× 128 binary image

read Md(i, j),Mu(i, j),Ml(i, j), and Mr(i, j). Recall that
Md and Mu are row major order, while Ml and Mr are
column major order. Thus, memory access to Ml and Mr is
not coalesced. For coalesced memory access, we the diagonal
arrangement of the shared memory [22]. For example, each
Ml(i, j) arranged in offset i + j

√
n (column major order)

is read by thread (j, i) (i.e. thread 32j + i) and written in
s[i, (i + j) mod 32], where s is a 2-dimensional array of
size 32 × 32 in the shared memory. After that, each thread
(i, j) read s[i, (i + j) mod 32], which stores Ml(i, j). This
transposing a submatrix is very efficient, because reading
Ml by a warp of 32 threads (j, 0), (j, 1), . . . , (j, 31) is
coalesced and reading and writing by a warp of 32 threads
(i, 0), (i, 1), . . . , (i, 31) are conflict-free.

F. Mixed-to-complete and mixed-to-connected conversions

We simply use one thread for each set of 2 × 2 elements
{M(i, j), M(i, j+1), M(i+1, j), M(i+1, j+1)} in M for
the mixed-to-complete conversion. If they have 1 or 2 black
pixels, then the thread terminates immediately. Otherwise,
it finds hidden exclave pixels and store the closest black
pixel in M(i, j). Reading 2 × 2 elements is coalesced, but
memory access to find hidden exclave pixels is not coalesced.
However, the mixed-to-complete conversion runs faster than
the 4-directional sweep because the number of sets of 2 × 2
elements that have 3 or 4 black pixels is very small.

Similarly, we use one thread for each element in M for
the mixed-to-connected conversion. A thread terminates, if
the assigned pixel is not an appearing exclave pixel. If the
assigned pixel is an appearing exclave pixel, then the thread
hides it and continues to find neighboring exclave pixels. Since
a binary image has very few appearing exclave pixels, most
of threads terminate immediately. Also, the computation for
determining if a pixel is an appearing exclave pixel is very
light, the mixed-to-connected conversion runs faster than the
mixed-to-complete conversion.

V. EXPERIMENTAL RESULTS

We have implemented the jump flooding algorithm
(JFA) [17], the parallel banding algorithm (PBA) [21], and our
algorithm for computing the Voronoi maps and the Euclidean
distance map. We have used GeForce GTX 1080 GPU, which
has 20 streaming multiprocessors with 128 cores each. In
particular, for implementing the PBA, we have modified source

Fig. 11. The binarized image of Lena by a threshold such that a half of the
pixels are black

codes provided by the authors of the paper [21] to attain the
best performance on GeForce GTX 1080 GPU. For reference,
we have implemented a sequential algorithm for the Euclidean
distance map based on [12] and evaluated the running time on
Intel Core i7-4790 CPU (3.6GHz).

We have used four images, “Lena” (Figure 11), “50% ran-
dom”, “1% random”, and “0.01% random.” In “p% random”
(p = 50, 1, 0.01), black pixels are placed at random such that
p% out of all pixels are black. Hence, in “1% random” and
“0.01% random”, regions of sizes 10 × 10 and 100 × 100
have expected one black pixel, respectively. On the other hand,
“50% random” has too many black pixels and any group
of 32 consecutive pixels have at least one black pixel with
probability 1 − 2−32. Although “Lena” also has 50% black
pixels, they are clustered and all pixels in some groups of 32
consecutive pixels are all black or all white. Thus, we can
expect that computation for “Lena” can be faster than “50%
random” due to a smaller number of warp divergence.

Table I shows the running time for a single binary image of
sizes from 512×512 (256K) to 16K×16K (256M). We have
used the multiple-block (synchronous) sweep and the warp-
wise (asynchronous) sweep to compute the mixed Voronoi map
of a single image. In both implementations, CUDA blocks
with 2 warps of 64 threads are used to attain 100% thread
occupancy. The warp-wise (asynchronous) sweep always runs

TABLE I
THE RUNNING TIME FOR A SINGLE BINARY IMAGE IN MILLISECONDS

Input Algorithm 512× 512 1K × 1K 2K × 2K 4K × 4K 8K × 8K 12K × 12K 16K × 16K
CPU Euclidean distance map 6.449 25.06 122.6 591.0 2690 6259 11600
JFA Euclidean distance map 0.1936 0.8169 3.168 13.53 58.23 137.2 252.9
PBA Euclidean distance map 0.3059 0.8473 2.400 8.523 33.86 75.92 134.5

Lena mixed Voronoi map (multiple-block) 1.624 3.423 6.956 14.61 35.94 64.59 96.99
mixed Voronoi map (warp-wise) 0.6288 1.258 2.629 6.502 19.98 47.80 79.47

connected Voronoi map (warp-wise) 0.6369 1.287 2.725 6.861 21.35 50.51 84.26
complete Voronoi map (warp-wise) 0.7003 1.441 3.098 7.772 23.74 55.03 90.44
Euclidean distance map (warp-wise) 0.7081 1.463 3.171 8.028 24.73 57.26 94.50

CPU Euclidean distance map 7.463 31.70 157.5 748.4 3416 7950 14530
JFA Euclidean distance map 0.2095 0.9719 3.977 18.15 82.00 197.3 367.1
PBA Euclidean distance map 0.2714 0.8552 2.700 10.62 43.37 94.79 170.1

50% mixed Voronoi map (multiple-block) 1.545 3.441 7.040 14.81 36.51 65.86 101.3
random mixed Voronoi map (warp-wise) 0.6155 1.212 2.682 6.786 20.79 49.52 84.07

connected Voronoi map (warp-wise) 0.6251 1.241 2.781 7.166 22.30 53.04 89.47
complete Voronoi map (warp-wise) 0.6425 1.308 3.022 8.068 25.81 60.49 104.4
Euclidean distance map (warp-wise) 0.6517 1.343 3.120 8.446 27.32 62.81 109.9

CPU Euclidean distance map 5.815 25.07 128.7 628.8 2907 6808 12540
JFA Euclidean distance map 0.2117 0.9366 3.966 18.00 81.49 194.8 364.9
PBA Euclidean distance map 0.2072 0.5816 2.006 7.644 33.10 74.33 133.6

1% mixed Voronoi map (multiple-block) 1.541 3.186 6.862 14.28 36.47 65.76 101.5
random mixed Voronoi map (warp-wise) 0.6394 1.183 2.685 6.773 20.71 49.29 83.73

connected Voronoi map (warp-wise) 0.6503 1.213 2.790 7.180 22.32 53.23 89.61
(complete) Voronoi map (warp-wise) 0.6649 1.240 2.858 7.433 23.29 55.01 93.66
Euclidean distance map (warp-wise) 0.6758 1.276 2.965 7.840 24.90 57.24 99.75

CPU Euclidean distance map 4.656 20.41 109.4 551.3 2596 6098 11250
JFA Euclidean distance map 0.2114 0.9257 3.967 18.00 81.48 193.6 364.8
PBA Euclidean distance map 0.1275 0.3737 1.396 5.904 25.70 58.61 106.5

0.01% mixed Voronoi map (multiple-block) 1.659 3.307 6.691 14.59 36.43 65.61 103.1
random mixed Voronoi map (warp-wise) 0.6404 1.172 2.690 6.772 20.68 49.09 83.49

connected Voronoi map (warp-wise) 0.6510 1.203 2.795 7.181 22.28 52.43 89.27
complete Voronoi map (warp-wise) 0.6490 1.202 2.794 7.163 22.24 52.97 89.26
Euclidean distance map (warp-wise) 0.6600 1.233 2.900 7.567 23.83 55.16 95.25

TABLE II
THE RUNNING TIME FOR 2,4,8,16,32,64, AND 100 BINARY IMAGES WITH 2K × 2K (4M) PIXELS

Input Algorithm 2 4 8 16 32 64 100
CPU Euclidean distance map 262.9 514.3 1029 2111 4396 8903 12990
JFA Euclidean distance map 6.288 12.54 25.02 50.04 100.1 194.3 314.0
PBA Euclidean distance map 4.427 8.305 16.04 31.56 62.68 125.1 195.3

Lena mixed Voronoi map (single-block) 3.046 3.661 6.313 12.03 22.28 42.96 66.98
connected Voronoi map (single-block) 3.221 4.000 6.987 13.37 24.94 48.28 75.29
complete Voronoi map (single-block) 3.842 5.149 9.174 17.62 33.36 64.92 101.4
Euclidean distance map (single-block) 3.974 5.406 9.678 18.62 35.34 68.90 107.6

CPU Euclidean distance map 322.6 645.3 1281 2589 5129 10310 17540
JFA Euclidean distance map 8.000 15.96 31.87 64.22 129.9 253.7 408.4
PBA Euclidean distance map 5.178 10.12 19.49 38.43 76.84 154.3 240.9

50% mixed Voronoi map (single-block) 3.404 4.154 7.295 14.06 25.98 50.37 78.27
random connected Voronoi map (single-block) 3.600 4.542 8.062 15.59 28.98 55.91 86.62

complete Voronoi map (single-block) 4.047 5.411 9.816 19.06 36.05 70.50 109.5
Euclidean distance map (single-block) 4.181 5.670 10.33 20.08 38.10 74.60 115.9

CPU Euclidean distance map 264.7 519.4 1049 2097 4223 8415 13410
JFA Euclidean distance map 7.957 15.87 31.69 64.13 130.1 249.2 410.3
PBA Euclidean distance map 3.784 7.329 14.32 28.36 56.45 112.6 175.7

1% mixed Voronoi map (single-block) 3.390 4.130 7.252 13.98 25.78 50.07 78.03
random connected Voronoi map(single-block) 3.614 4.561 8.109 15.68 28.87 56.25 87.47

complete Voronoi map (single-block) 3.729 4.796 8.562 16.57 30.98 60.06 93.52
Euclidean distance map (single-block) 3.862 5.051 9.064 17.56 32.98 64.06 99.71

CPU Euclidean distance map 227.7 444.4 892.4 1798 3594 7210 16000
JFA Euclidean distance map 7.842 15.64 31.22 62.57 125.4 249.3 395.1
PBA Euclidean distance map 2.739 5.375 10.70 21.33 42.53 84.93 132.6

0.01% mixed Voronoi map (single-block) 3.372 4.114 7.234 13.95 25.74 49.98 77.79
random connected Voronoi map (single-block) 3.586 4.538 8.076 15.62 29.08 56.15 87.11

complete Voronoi map (single-block) 3.574 4.510 8.014 15.50 28.84 55.83 86.86
Euclidean distance map (single-block) 3.707 4.763 8.508 16.48 30.81 59.77 92.98

faster than the multiple-block (synchronous) sweep. Roughly
speaking, we can think that the difference of the running time
of the multiple-block sweep and the warp-wise sweep is the
overhead of synchronization by iterative kernel calls by the
multiple-block sweep. For example, the overhead ratio for
Lena image of size 4K × 4K is 14.61−6.502

14.61 = 55%. The
ratio of kernel call overhead ranges from 17% to 64.7% of
the total computing time of the multiple-block sweep.

Table I also shows the running time of connected/complete
Voronoi maps and Euclidean distance maps. They use the 4-
directional sweep by the warp-wise sweep. From the table, we
can see that the mixed-to-connected, the mixed-to-complete
conversions and the complete-to-distance conversion to obtain
the Euclidean distance map from the complete Voronoi map
are not dominant. For example, the mixed Voronoi map for
16K × 16K 50% random image is computed in 84.07ms.
We can say that the mixed-to-connected and the mixed-to-
complete conversions take 89.47 − 84.07 = 5.40 ms and
104.4 − 84.07 = 20.3 ms, respectively. Also, the complete-
to-distance conversion is only in 109.9− 104.4 = 5.5 ms.

For each binary image of each size in Table I, the running
time of the fastest implementation among the JFA, the PBA,
and our warp-wise Euclidean distance map algorithm is bold-
faced. The JFA can be the best only for images with 512×512
pixels. Our warp-wise Euclidean distance map algorithm is
always faster than the others if the size of images is larger than
or equal to 8K × 8K. For binary images of size 16K × 16K,
our algorithm is up to 1.54 times faster than the PBA, up to
3.83 times faster than the JFA and up to 132 times faster than
the CPU implementation.

To see the throughput of the computation, we have evaluated
the running time for 2, 4, 8, 16, 32, 62, and 100 binary images
of size 2K × 2K. We have used single-block (synchronous)
sweep to compute the mixed Voronoi map. For each sweep, we
use one CUDA block with 1024 threads. Hence, each warp of
32 threads is assigned to 64 columns (or rows). From Table II,
we can see that our implementation of the Euclidean distance
map is the faster than the JFA and the PBA for 4 or more
images. The PBA can be faster than ours for 2 images because
only 8 CUDA blocks are used in our implementation. For
100 images, our implementation is 1.43-2.08 times faster than
the PBA and 2.92-4.25 times faster than the JFA. Also, it is
121-172 times faster than the CPU implementation. Further,
since the Euclidean distance map and the Voronoi maps of
100 images with 2K × 2K (4M) pixels can be computed
in approximately 100 milliseconds, our GPU implementations
have potentiality to process Full HD videos with 2.1M pixels
in more than 1000 fps.

VI. CONCLUSION

We have shown a GPU implementation that computes the
mixed/connected/complete Voronoi maps and the Euclidean
distance map of a binary image. The idea of our GPU
implementation is to compute the mixed Voronoi map by
a simple operation. After that, it is converted into the con-
nected/complete Voronoi maps and the Euclidean distance

map. For binary images of size 16K × 16K, our algorithm
is up to 1.59 times faster than the PBA and 139 times
faster than the CPU implementation. For 100 images, our
implementation is 1.43-2.08 times faster than the PBA, 2.92-
4.25 times faster than the JFA, and 121-172 times faster than
the CPU implementation.

REFERENCES

[1] W. W. Hwu, GPU Computing Gems Emerald Edition. Morgan
Kaufmann, 2011.

[2] Y. Takeuchi, D. Takafuji, Y. Ito, and K. Nakano, “ASCII art generation
using the local exhaustive search on the GPU,” in Proc. of International
Symposium on Computing and Networking, Dec. 2013, pp. 194–200.

[3] H. Kouge, Y. Ito, and K. Nakano, “A GPU implementation of clipping-
free halftoning using the direct binary search,” in Proc. of International
Conference on Algorithms and Architectures for Parallel Processing
(LNCS 8630), Aug. 2014, pp. 57–70.

[4] NVIDIA Corporation, “NVIDIA CUDA C best practice guide version
3.1,” 2010.

[5] ——, “NVIDIA CUDA C programming guide version 7.0,” Mar 2015.
[6] D. Man, K. Uda, H. Ueyama, Y. Ito, and K. Nakano, “Implementations

of a parallel algorithm for computing Euclidean distance map in mul-
ticore processors and GPUs,” International Journal of Networking and
Computing, vol. 1, no. 2, pp. 260–276, July 2011.

[7] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman, “Linear time Euclidean
distance transform algorithms,” IEEE Trans. Pattern Analysis and Ma-
chine Intelligence, vol. 17, no. 5, pp. 529–533, May 1995.

[8] L. Chen, “Optimal algorithm for complete Euclidean distance trans-
form,” Chinese J. Computers, vol. 18, no. 8, pp. 611–616, 1995.

[9] L. Chen and H. Chuang, “A fast algorithm for Euclidean distance maps
of a 2-d binary image,” Information Processing Letters, vol. 51, pp.
25–29, 1994.

[10] T. Hirata, “A unified linear-time algorithm for computing distance maps,”
Information Processing Letters, vol. 58, pp. 129–133, 1996.

[11] A. Fujiwara, T. Masuzawa, and H. Fujiwara, “An optimal parallel
algorithm for the Euclidean distance maps of 2-d binary images,”
Information Processing Letters, vol. 54, pp. 295–300, 1995.

[12] T. Hayashi, K. Nakano, and S. Olariu, “Optimal parallel algorithm
for finding proximate points, with applications,” IEEE Transactions
on Parallel and Distributed Systems, vol. 9, no. 12, pp. 1153–1166,
December 1998.

[13] S. Pavel and S. Akl, “Efficient algorithms for the Euclidean distance
transform,” Parallel Processing Letters, vol. 5, no. 2, pp. 205–212, 1995.

[14] L. K and Z. S. Q, Parallel Computing Using Optical Interconnections.
Boston, USA: Kluwer Academic Publishers, 1998.

[15] L. Chen, P. Yi, C. Yixin, and X. Xiaohua, “Efficient parallel algorithms
for Euclidean distance transform,” The Computer Journal, vol. 47, no. 6,
pp. 694–700, 2004.

[16] Y.-H. Lee, S.-J. Horng, T.-W. Kao, F.-S. Jaung, Y.-J. Chen, and H.-
R. Tsai, “Parallel computation of exact Euclidean distance transform,”
Parallel Computing, vol. 22, no. 2, pp. 311–325, 1996.

[17] G. Rong and T.-S. Tan, “Jump flooding in GPU with applications to
Voronoi diagram and distance transform,” in Proc. of Symposium on
Interactive 3D graphics and games, March 2006, pp. 109 – 116.

[18] J. Schneider, M. Kraus, and R. Westermann, “GPU-based euclidean dis-
tance transforms and their application to volume rendering,” Computer
Vision, Imaging and Computer Graphics. Theory and Applications, pp.
215–228, 2010.

[19] D. Man, K. Uda, Y. Ito, and K. Nakano, “A GPU implementation of
computing Euclidean distance map with efficient memory access,” in
Proc. of International Conference on Networking and Computing, Dec.
2011, pp. 68–76.

[20] ——, “Accelerating computation of Euclidean distance map using the
GPU with efficient memory access,” Journal of Parallel, Emergent and
Distributed Systems, vol. 28, no. 5, pp. 383–406, 2013.

[21] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan, “Parallel banding
algorithm to compute exact distance transform with the GPU,” in The
Proc. of ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, Feb. 2010, pp. 83–90.

[22] K. Nakano, “Simple memory machine models for GPUs,” International
Journal of Parallel, Emergent and Distributed Systems, vol. 29, no. 1,
pp. 17–37, 2014.

