On the 10000 Yen Game *

Koji Nakano
Department of Information Engineering, Hiroshima University

1 Introduction

Many programming competitions have been held to improve programming
abilities of students. However, they may be too difficult for students to
understand the rules, and may require to use complicated data structures.
Hence the students may be discouraged to join the programming competi-
tions.

The main contribution of this article is to introduce the 10000 Yen Game,
which has a quite simple rule and does not require complicated data struc-
tures and programming techniques. This game was originally designed for
a programming competition. Students who join this programming compe-
tition need to write a C-language program to decide the betting values in
each round of the game. Since the rule and the programming interface are
so simple that students who have just started to learn C-language program-
ming can join the programming competition. Also, although the rule is
very simple, this game is so deep. A lot of algorithmic and programming
techniques must be used to develop a strong an good program.

2 The 10000 Yen Game

The 10000 Yen Game is a two-player game. Initially, two players A and B
have 10000 yen each. Each player bet totally 10000 yen in 10 rounds. In
each of the 10 rounds, a player bet smaller wins both. If the two player bet
the same, each player get the money he/she bet. Let a; and b; (1 <14 < 10)
the values that players A and B bet in the i-th round. We can write the
game formally as follows:

*This document is trasnrated from the article “Koji Nakano, On the 1000 Yen Game,
The Bulletin of the LA Symposium, Vol 52, pp. 23-27, January 2009” written in Japanese.

e The total betting value of each player must be 10000, that is,

10 10
> a; =" b; = 10000.
=1 =1

e The betting value is at least 0, that is, in each round i (1 < i < 10),
both a; > 0 and b; > 0 hold.

e A player bet smaller win both. In other words, If a; < b;, then A win
a; + b; yen. If a; > b;, then B win a; + b; yen. If a; = b;, then A and
B get a; (= b;) yen each.

Note that, if a bet larger wins both, the game is trivial. It is also trivial, if
the game has only two rounds.

We assume that, when players A and B decide betting values a; and
b;, they know the history of the betting values a1,...,a;—1 and by,...,b;_1,
and these values can be used for deciding the next betting values a; and b;.
Clearly, at the end of the 10-th round, A and B have 20000 yen totally. The
winner of this game is a player who won larger total values. This game is
repeated 1000 times for two players A and B. Players A and B can use the
history of the past games. For example, player A can analyzes the strategy
of B based on the history, and can adjust the betting value in each round of
each game. If the number of won games of A is larger than that of B, then
A is the winner of this match.

In our laboratory, more than 30 students joined the competition, and we
select the winner of them by the round-robin contest.

In the programming competition, students must write C-language player
programs which decide the betting values based on the history of the game.
We have developed a server program that manages the two player programs.
Let A and B also denote two player programs. The server program execute
player programs A and B as child processes using folk and exec system calls.
The betting values are transfered through the pipes as follows: The player
programs A and B write a; and by, respectively, to the standard output
using the “printf” library call. The sever program receives them through
the pipes, and displays the result of the first round. After that, the server
program send b; and a; to The player programs A and B, respectively,
though the pipe. The player programs A and B receives these values from
the standard input using the “scanf” library call. This protocol is repeated
for 10 rounds. The number of games of the match is given as the first
argument (i.e argv[1]) of player programs. The 10-round game is repeated
for argv[1] times.

Server prograimn

az" lbi

a; l ‘bi

player program A

player program B

Figure 1: The server program and player programs

3 Examples of player programs for the 10000 yen

game

This section shows three simple player programs.

always1000.c: This player program bets 1000 yen in every round.

minusl.c: This player program bets 0 yen in the first round. From the
2nd to 9th rounds, it bets the opponent betting value of the previous
round minus 1. Finally it bets the remaining value in the 10-th round.

random.c: From 1st to 9th rounds, the betting value is selected uniformly
at random from 0 to the remaining value. The remaining value is bet

in 10-th round.

Lists 1,2, and 3 are the program lists. The definitions for including header

files are omitted.

List 1: always1000.c

int main(int argc,char sxargv){
int n,j,k,num_game;
num_game=atoi(argv[1]);
for(k=1;k<=num_game;++k)
for(j=1,j<=10;4++j){
printf("1000\n");
fflush(stdout);
scanf(" %d” ,&n);

exit(0);
}

List 2: minusl.c

int main(int argc,char sxargv){
int n,j,k,num_game;
num_game=atoi(argv[1]);
for(k=1;k<=num_game;++k){
int bet,sum=0;
printf("0\n"); // round 1
fflush(stdout);
scanf(" %d" ,&n);
for(j=2;j<=9;++j){ //rounds 2—9
bet=(n>07?n—1:0);
printf(" %d\n" bet);
fflush(stdout);
sum-+=bet;
scanf(" %d" ,&n);

printf(" %d\n",10000—sum); // round 10
fflush(stdout);
sum-+=bet;
scanf(" %d" ,&n);
}
exit(0);
}

Let us see the results of the matches between alwaysl and minus1. For
simplicity, we assume 1l-game match. List 4 is the output of the server
program. The list shows that alwasyl000.c win 3008 yen, minusl.c 16992
yen, and thus minusl.c is a winner of the game. Intuitively, one of the good
strategy is to select the betting value of a round should be a bit smaller
than the opponent betting value. Since random.c uses works randomly, it
may win or lose for any opponent. With high probability, random.c looses
against always1000.c and wins agings minusl.c. Thus, these three games are
in a three-cornered tie.

4 Various strategy for the 10000 yen game

Clearly, in the 10000 yen game, it is not possible for one of the two players
to win all the 10 rounds. Each player should have both win rounds and loose
rounds. If we can bet a bit smaller value than the opponent betting value
when the opponent bet a large value, we win the large value. Thus, one of
the good strategy is to guess a round in which the opponent bets a large
value. If we can guess such round and the value, we can bet a bit smaller
value in that stage and get the sum of the large betting values. For this

List 3: random.c

int main(int argc,char sxargv){
int n,i,j,num_game;
num_game=atoi(argv[1]);
srand(time(NULL));
for(j=1;j<=num_game;++j){
int bet,remain=10000;
for(i=1;i<=9;++i){
bet=random()%remain;
printf(" %d\n" bet); // rounds 1—9
fflush(stdout);
remain—=bet:
scanf(" %d" ,&n);

printf(" %d\n" ,remain); // round 10
fflush(stdout);
scanf(” %d" ,&n);
}
exit(0);
}

purpose, our player program need to guess the opponent strategy in earlier
games of the 1000-game matches. Let us show several strategies developed
by students in the contest.

e In the first round, we bet a large value, say, 7000 yen. We bet the
remaining value almost equally but randomly in the remaining rounds.
With high probability, we loose in the first round. For example, if the
opponent bet 1000 yen, then we loose 8000 yen. After the first round,
we have 3000 yen while the opponent has 9000 yen. In the remaining
rounds, we bet expected 333 yen per round, while the opponent must
bet expected 1000 yen per round. So, with good probability, we win
in all the remaining rounds. If we win in the remaining 9 rounds, we
win 12000 yen.

e We memorize the opponent betting values of each round in the previ-
ous game. We bet a bit smaller value of each corresponding round in
the first 9 rounds. If the opponent bet a similar value, we win in the
first 9 rounds.

e We implement several strategies including above two, we select one
of the strategies at random for each round. We record the winning
percentage of each strategy, and select a strategy such that better
winning percentage strategies are selected with higher probability.

List 4: The result of the match alwaysl vs. minusl

always1000 vs minusl

1: 1000 [O] —> 0 1000

2: 1000 [999] —> 0 2999
1000 [999] —> 0 4998
1000 [999] —> 0 6997
1000 [999] —> 0 8996
1000 [999] —> 0 10995
1000 [999] —> 0 12994
1000 [999] —> 0 14993
1000 [999] —> 0 16992
10: [1000] 2008 —> 3008 16992

3008 [16992]

minusl won.

eoNaRW

It seems to me that there exists the best strategy. An strategy Ai, it is
always possible to develop a strategy As which beats A;. In general, we can
develop a strategy A;1 which beats A;, and thus, we can develop ultimate
strategy A, for some large n. However, it is not guaranteed that A, beats
all of the n — 1 strategies Ay, Ao,... A, 1. It may be possible that there
exists three particular strategies A, B, and C such that no strategy beats
all of these three strategies.

5 Conclusions

In this article, we have introduces the 10000 yen game, which is simple
but deep. Even a beginner of C-programming language can develop a player
program. The reader can download the source programs including the server
program and several player programs from

http://www.cs.hiroshima-u.ac.jp/“nakano/10000/.

