
Design of Combinational Logic: Full Adder, Adder, and ALU

1 Today’s goal

• Learn how to use ISE WebPack.

• Learn the design of combinational logic using Ver-
ilog HDL.

• Learn how to write test benches and perform the simu-
lation.

• Learn how to embed a designed circuit into an FPGA.

• Design ALU as a basic component of CPU.

2 Today’s contents

Step 1 Write full adder(List 1) and its test bench(List 2).

Step 2 Check1 Perform the simulation using the test bench
to confirm that the full adder works correctly.

Step 3 Check2 Write a UCF(User Constraint File) (List 3),
embed it in the FPGA to confirm that the full adder
works in the FPGA correctly.

Step 4 Write full adder using always statement(List 4) and
confirm that it works correctly by the simulation using
the test bench(List 2).

Step 5 Check 3 Write 4-bit adder using 4-full adders(List 5)
and confirm that it works correctly by the simulation
using its test bench(List 6).

Step 6 Check 4 Write ALU(List 7) and confirm that it works
correctly by the simulation using its test bench(List 8).

3 Full adder

Full adder has 3 input bits a,b, cin and 2 output bits s, cout.
The sum of 3 input bits are computed and 2 out bits represent
the sum such that s is a lower bit, and count is an upper bit.
Assignment statements defines continuous assignments.

List 1: Full adder using assigment statementsfa.v

1 module fa(a, b, cin, s, cout);
2

3 input a, b, cin;
4 output s, cout;
5 wire a, b, cin, s, cout;
6

7 assign s = a ˆ b ˆ cin;
8 assign cout = (a & b) | (b & cin) | (cin & a);
9

10 endmodule

4 Test bench

Test bench defines the change of inputs. In List 2, module fa

is instantiated as fa 0.

List 2: Test benchfa tb.v for fa.v

1 ‘timescale 1ns / 1ps
2 module fa tb;
3

4 reg a,b,cin;
5 wire s, cout;
6 fa fa0 (.a(a), .b(b), .cin(cin), .s(s), .cout(cout));
7

8 initial begin
9 a = 0; b = 0; cin = 0;

10 #100 a = 1; b = 0; cin = 0;
11 #100 a = 0; b = 1; cin = 0;
12 #100 a = 1; b = 1; cin = 0;
13 #100 a = 0; b = 0; cin = 1;
14 #100 a = 1; b = 0; cin = 1;
15 #100 a = 0; b = 1; cin = 1;
16 #100 a = 1; b = 1; cin = 1;
17 #100 a = 0; b = 0; cin = 0;
18 end
19 endmodule

5 UCF(User Constraint file)

The UCF defines the mapping between ports of the module
and the pins of an FPGA. NET and LOC correspond to a

1

name of module port, and a name of FPGA pin.

List 3: UCF for fa.ucf (Spartan-3A/AN)

1 # SWITCH
2 NET ”a” LOC = ”V8” | IOSTANDARD = LVTTL | PULLUP;
3 NET ”b” LOC = ”U10” | IOSTANDARD = LVTTL | PULLUP

;
4 NET ”cin” LOC = ”U8” | IOSTANDARD = LVTTL |

PULLUP;
5

6 # LED
7 NET ”s” LOC = ”R20” | IOSTANDARD = LVTTL | SLEW =

SLOW | DRIVE = 8;
8 NET ”cout” LOC = ”T19” | IOSTANDARD = LVTTL |

SLEW = SLOW | DRIVE = 8;

6 Always statement

Always statements in List 4 is used to design combinational
logic. “always @ (...)” defines a event list. If the values of
signal (net) in the event list change, the following statement
is executed.

7 Instantiate modules

In List 5, module fa is instantiated four times as fa0, fa1,
fa2, and fa3. These modules are connected by wires (nets).
Instead, we can simply use “ assign s = a+b” instead of using
four fa’s.

List 4: Full adder using always statementfa.v

1 module fa(a, b, cin, s, cout);
2

3 input a, b, cin;
4 output s, cout;
5 reg s, cout;
6

7 always @(a or b or cin)
8 begin
9 s = a ˆ b ˆ cin;

10 cout = (a & b) | (b & cin) | (cin & a);
11 end
12

13 endmodule

List 5: 4-bit adder using adder4.v

1 module adder4(a, b, s);
2

3 input [3:0] a,b;
4 output [3:0] s;
5 wire [2:0] c;
6

7 fa fa0(.a(a[0]),.b(b[0]),.cin(0),.s(s[0]),.cout(c[0]));
8 fa fa1(.a(a[1]),.b(b[1]),.cin(c[0]),.s(s[1]),.cout(c[1]));
9 fa fa2(.a(a[2]),.b(b[2]),.cin(c[1]),.s(s[2]),.cout(c[2]));

10 fa fa3(.a(a[3]),.b(b[3]),.cin(c[2]),.s(s[3]));
11

12 endmodule

List 6: Test bench for 4-bit adderadder4 tb.v

1 ‘timescale 1ns / 1ps
2 module adder4 tb;
3

4 reg [3:0] a,b;
5 wire [3:0] s;
6

7 adder4 adder4 0(.a(a),.b(b),.s(s));
8

9 initial begin
10 a = 4’b0000; b=4’b0000;
11 #100 a = 4’b0001;
12 #100 a = 4’b0010;
13 #100 b = 4’b0111;
14 #100 a = 4’b1101;
15 #100 a = 4’b1011;
16 #100 b = 4’b1001;
17 #100 b = 4’b1110;
18 #100a = 4’b0000; b=4’b0000;
19 end
20

21 endmodule

2

8 ALU

ALU (List 7) is used to compute a selected function. ALU
has 3 input ports, f(5 bits), a(16 bits), b(16 bits), and one
output port s. f is used to select a function (operation), and
the resulting value is output from s. We assume that a, b,
s are signed integers (2’s complement). However, array of
bits (vector) in Verilog HDL is handled as unsigned integers.
Thus, for relational operators, we add 16’h8000 to a and b to
get correct results.

9 Homeworks

In your report, you must show enough explanation and the
simulation results.

Homework 1 Design an 8-bit adder using 8 full adders, and
write its test bench. Perform the simulation to confirm
that the 8-bit adder works correctly.

Homework 2 Write test benches for ALU to confirm that
each of 19 functions works correctly. You should choose
various input b and a for each functin. For example,
for bianry arithmetic function, you should choose {b >

0, b < 0} × {a > 0, a < 0} (4 cases), and the case that
the reult is overflow.

List 7: ALU alu.v

1 ‘define ADD 5’b00000
2 ‘define SUB 5’b00001
3 ‘define MUL 5’b00010
4 ‘define SHL 5’b00011
5 ‘define SHR 5’b00100
6 ‘define BAND 5’b00101
7 ‘define BOR 5’b00110
8 ‘define BXOR 5’b00111
9 ‘define AND 5’b01000

10 ‘define OR 5’b01001
11 ‘define EQ 5’b01010
12 ‘define NE 5’b01011
13 ‘define GE 5’b01100
14 ‘define LE 5’b01101
15 ‘define GT 5’b01110
16 ‘define LT 5’b01111
17 ‘define NEG 5’b10000
18 ‘define NOT 5’b10001
19 ‘define BNOT 5’b10010
20

21 module alu(a, b, f, s);
22

23 input [15:0] a, b;
24 input [4:0] f;
25 output [15:0] s;
26 reg [15:0] s;
27 wire [15:0] x,y;
28

29 assign x = a + 16’h8000;
30 assign y = b + 16’h8000;
31

32 always @(a or b or x or y or f)
33 case(f)
34 ‘ADD : s = b + a;
35 ‘SUB : s = b − a;
36 ‘MUL : s = b ∗ a;
37 ‘SHL : s = b << a;
38 ‘SHR : s = b >> a;
39 ‘BAND: s = b & a;
40 ‘BOR : s = b | a;
41 ‘BXOR: s = b ˆ a;
42 ‘AND : s = b && a;
43 ‘OR : s = b || a;
44 ‘EQ : s = b == a;
45 ‘NE : s = b != a;
46 ‘GE : s = y >= x;
47 ‘LE : s = y <= x;
48 ‘GT : s = y > x;
49 ‘LT : s = y < x;
50 ‘NEG : s = −a;
51 ‘BNOT : s = ˜a;
52 ‘NOT : s = !a;
53 default : s = 16’hxxxx;
54 endcase
55

56 endmodule

3

Table 1: Specification of ALU(Arithmetic and Logic Unit)

function f outputs
binary arithmetic ADD 00000 b + a (addition)

SUB 00001 b − a (subtraction)
MUL 00010 b * a (multiplication)

shift SHL 00011 b << a (left shift)
SHR 00100 b >> a (right shift)

bitwise BAND 00101 b & a (bitwise and)
BOR 00110 b | a (bitwise or)
BXOR 00111 b ^ a (bitwise xor)

logic AND 01000 b && a (logical and)
OR 01001 b || a (logical or)

relational EQ 01010 b==a (b is equal toa)
NE 01011 b!=a (b is not equal toa)
GE 01100 b>=a (b is larger than or euqal to a)
LE 01101 b<=a (b is smaller than or equal to a)
GT 01110 b>a (b is larger than a)
LT 01111 b<a (b is smaller than a)

unary arithmetic NEG 10000 −a (negation)
bitwise BNOT 10001 ~a (bitwise not)
logic NOT 10010 !a (logical not)

List 8: Test bench foralu tb.v

1 ‘timescale 1ns / 1ps
2

3 module alu tb;
4

5 reg [15:0] a,b;
6 reg [4:0] f;
7 wire [15:0] s;
8

9 alu alu0(.a(a),.b(b),.f(f),.s(s));
10

11 initial begin
12 a = −3; b= 3; f = 5’b01100;
13 #100 a = −2;
14 #100 a = −1;
15 #100 a = 0;
16 #100 a = 1;
17 #100 a = 2;
18 #100 a = 3;
19 #100 a = 4;
20 #100 a = 5;
21 #100 a = 6;
22 end
23

24 endmodule

4

