Design of Sequential Logic: Flip flops, counter, state machine, stacks

1 Today’s goal

e Learn how to use always and if statements to design flip
flops.

e Learn how to design sequential logic such as counters,
state machines and stacks.

e Learn how to write the postfix notation of a formula.

2 Today’s contents

Step 1 Write a flip flop(List 1) and its test bench(List 2),
and perform the simulation to confirm that it works

properly.

Step 2 Check 1 Write a counter(List 3) and its test bench
(List 4) and perform the simulation to confirm that it
works properly.

Step 3 Check 2 Write a top module (List 5) of the counter
and its ucf (List 6). Implement the bit file in the FPGA
and confirm that it works correctly.

Step 3 Check 3 Write a state machine (List 7) and its test
bench (List 8). Perform the simulation.

Step 4 Check 4 Write a top module (List 9) and implement
the state machine using ucf (List 10) in the FPGA.

Step 5 Check 5 Write a stack (List 11), an operation stack
(List 12) and its test bench (List 13). Perform the sim-
ulation.

3 Flip flops

In sequential logic, the output depends on the past and the
present input. To implement sequential logic, flip flops (D-
flip flops) are used to store the information of the past input.
Table 1 shows the behavior of the flip flop. It has 3 input
bits, d (data input), clk (clock), and reset, and one output
bit, q (data output).

Table 1: Behavior of a Flip flop

Input Output
clk reset q
- 0 0 (Asynchronous reset)
7 1 d (Synchronous latch)
not 1 1 previous q(keeps the same value)

In the event list in List 1, “posedge clk” and “negedge reset”
mean rising edge of clk and falling edge of reset, respectively.
Thus, if event negedge reset occurs, reset is always 0, and
q <= 0 is executed. In the event of posedge clk, we have two
cases:

e if reset is 0, then q <= 0 is executed, although q is 0
before the event.

o if reset is 1, then q <= d is executed.

Thus, the flip flop in List 1 satisfies the specification in List 1.

List 1: Flip flop ff.v
module ff(clk, reset, d, q);

1
2
3 input clk, reset, d;
4 output q;
5 reg q;
6
7 always ©(posedge clk or negedge reset)
8 if(Ireset) g <= 0;
9 else g <=d;
10
11 endmodule

List 2 shows an example of the test bench for flip flop. The
frequency of clk is 10MHz (i.e. 100ns).

4 Counter

Let us design N-bit counter whose specification is defined in
List 2 The counter has four 1-bit input clk, reset, load, and

26

List 2: Test bench for Flip flop ff.v

‘timescale 1ns/1ps
module ff_tb;

reg clk,reset,d;
wire q;

ff ffO(.clk(clk),.reset(reset),.d(d),.q(q));

initial begin
ck = 0;
forever
#50 clk = “clk;
end

initial begin

reset = 0; d = 0;
#100 reset = 1; d = 1;
#200d = 0;
#200d =1,
#100 reset= 0;
#100 reset = 1;

#200d = 1;

#100d = 0;

end
endmodule

inc. It also has N-bit input d and N-bit output q.

Table 2: Specification of a counter

input output
clk reset | load | inc q
- 0 - - 0 (asynchronous reset)
7 1 1 0 d (synchronous latch)
1 1 0 1 g+1(increment)
T 1 0 0 | gq(keeps the same value)
not | 1 - - | q(keeps the same value)

List 3 is a Verilog HDL description of an N-bit counter.

The default value of N is 16.

List 5 is a UCF file for a counter. If you have an error,

then add a new constraint CLOCK_DEDICATED_ROUTE =
FALSE; to the BTN_EAST (i.e. clk).

5

State machine

Figure 1 illustrates the state machine for CPU that we will de-
sign later of this course. Two states FETCHA and FETCHB

OO~ Ok WN -

N U WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Tk W

List 3: N-bit Counter counter.v

module counter(clk,reset,load,inc,d,q);
parameter N = 16;

input clk,reset,load,inc;
input [N—1:0] d;
output [N—1:0] q;

reg [N—1:0] q;

always ©(posedge clk or negedge reset)
if(reset) g <= 0;
else if(load) q <= d;
else if(inc) g <=q + 1;

endmodule

List 4: Test bench for a counter counter_tb.v

‘timescale 1ns / 1ps
module counter_tb;

reg clk,reset,load,inc;

reg [15:0] d;

wire [15:0] q;

counter counter0(.clk(clk), .reset(reset), .load(load), .inc(inc)

,-d(d), .q(q));

initial begin
clk = 0;
forever
#50 clk = “clk;
end

initial begin
reset = 0; load = 0; inc = 0; d=16"h0000;
#100 reset = 1;
#100 inc = 1;
#300 inc = 0; loa
#100 inc = 1; loa
#500 reset = 0;

end

1 6'h1234;
0;

6'h0000;

o 0o

d= =1
d= =1

endmodule

List 5: top module counter_top.v

module counter_top(BTN_NORTH, BTN_EAST, BTN_WEST,
BTN_SOUTH, LED);
input BTN_NORTH, BTN_EAST, BTN_WEST,
BTN_SOUTH;
output [7:0] LED;

counter #(8) counter0(.clk(BTN_EAST),.reset(”
BTN_SOUTH),.load(BTN_NORTH),.inc(BTN_WEST),.
d(8’h55),.q(LED));
endmodule

List 6: UCF file for counter_top.ucf(Spartan-3A/3AN Starter

kit)

1 # PUSH SWITCH

2 NET "BTN_NORTH" LOC = "T14" | IOSTANDARD =
LVTTL | PULLDOWN ;

3 NET "BTN_EAST” LOC ="T16" | IOSTANDARD = LVTTL
| PULLDOWN ;

4 NET "BTN_WEST" LOC = "U15" | IOSTANDARD = LVTTL
| PULLDOWN ;

5 NET "BTN_SOUTH" LOC ="T15" | IOSTANDARD =
LVTTL | PULLDOWN ;

LED

NET "LED<7>" LOC = "W21" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

9 NET "LED<6>" LOC = "Y22" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

10 NET "LED<5>" LOC = "V20" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

11 NET "LED<4>" LOC = "V19” | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

12 NET "LED<3>" LOC = "U19" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

13 NET "LED<2>" LOC = "U20" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

14 NET "LED<1>" LOC = "T19" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

15 NET "LED<0>" LOC = "R20" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;

el N}

are used to fetch instruction codes from a memory, and EX-
ECA and EXECB are used to execute an instruction accord-
ing to the instruciton code. Since the state machine has 5
states, three bits are used to store the current state.

List 7 is a state machine for CPU and List 8 is its test
bench.

List 7: State machine state.v

1 ‘define IDLE 3'b000
2 ‘define FETCHA 3'b001
3 ‘define FETCHB 3'b010
4 ‘define EXECA 3'b011
5 ‘define EXECB 3'b100
6
7 module state(clk,reset,run,cont,halt,cs);
8
9 input clk, reset, run, cont, halt;
10 output [2:0] cs;
11 reg [2:0] cs;
12
13 always ©(posedge clk or negedge reset)
14 if(Ireset) cs <= ‘IDLE;
15 else
16 case(cs)
17 ‘IDLE: if(run) cs <= ‘FETCHA;
18 ‘FETCHA: cs <= ‘FETCHB;
19 ‘FETCHB: cs <= ‘EXECA;
20 ‘EXECA: if(halt) cs <= ‘IDLE;
21 else if(cont) cs <= ‘EXECB;
22 else cs <= ‘FETCHA;
23 ‘EXECB: ¢s <= ‘FETCHA;
24 default: cs <= 3'bxxx;
25 endcase
26

27 endmodule

6 Stack

Stack is a Last In First Out (LIFO) memory, which is used
to store intermediate value for evaluating formula. Stack has
5 1-bit input clk, reset, load, push, pop, 16-bit input d, and
2 16-bit outputs qtop, gnext. Also, it has an array of 16-bit
registers. 3 inputs load, push, pop are used to control the
array of registers.

7 Operation Stack

An operation stack consists of stack and ALU. The operation
stack is used to evaluate the postfix notation of formulas. For

reset==

halt==

Figure 1: State machine

load push pop load& push
d d
q[0] ~ A Pl :i:
q[1] - o Pl A
I ~ - ~
q —_—

Figure 2: Behavior of Stack

NO Uk W~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

OO~ WN —

List 8: Test bench state_tb.v

‘timescale 1ns / 1ps
module state_tb;

reg clk,reset,run,halt,cont;
wire [2:0] cs;

state state0(.clk(clk),.reset(reset),.run(run),.cont(cont),.halt(
halt),.cs(cs));

initial begin
ck = 0;
forever
#50 clk = “clk;
end

initial begin
reset = 0; run = 0; halt = 0; cont = 0;
#100 reset = 1; run = 1,

#100 run = 0;
#200 cont = 1,
#100 cont = 0;
#600 halt = 1;
#100 halt = 0;
end
endmodule

List 9: Top module state_top.v of the state machine

‘define IDLE 3'b000
‘define FETCHA 3'b001
‘define FETCHB 3'b010
‘define EXECA 3'b011
‘define EXECB 3'b100

module state_top(BTN_EAST, BTN_.SOUTH, SW, LED);
input BTN_EAST, BTN_.SOUTH;
input [2:0] SW;
output [4:0] LED;
wire [2:0] cs;

state state0(.clk(BTN_EAST),.reset("BTN_SOUTH),.run(
SW[2]),.cont(SWI[1]),.halt(SW]0]),.cs(cs));

assign LED[4
assign LED[3

] cs == ‘IDLE);
assign LED[%
I

(

(cs == ‘FETCHA);

(cs == ‘FETCHB);
assign LED[1] = (
assign LED[0] = (cs

cs == ‘EXECA);
= 'EXECB);

endmodule

List 10:
3A/3AN)

1 # PUSH SWITCH

2 NET "BTN_EAST" LOC =
| PULLDOWN ;

3 NET "BTN_SOUTH" LOC =
LVTTL | PULLDOWN ;

UCF state_top.ucf for state machine(Spartan-

"T16" | IOSTANDARD = LVTTL
"T15" | IOSTANDARD =

LED
NET "LED<4>" LOC = "V19" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;
7 NET "LED<3>" LOC = "U19" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;
8 NET "LED<2>" LOC = "U20" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;
9 NET "LED<1>" LOC = "T19" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;
10 NET "LED<0>" LOC = "R20" | IOSTANDARD = LVTTL |
SLEW = QUIETIO | DRIVE = 4 ;
11

12 # SLIDE SWITCH
13 NET "SW<2>" LOC = "U8" | IOSTANDARD = LVTTL |

O Ot

PULLUP ;

14 NET "SW<1>" LOC = "U10" | IOSTANDARD = LVTTL |
PULLUP ;

15 NET "SW<0>" LOC = "V8" | IOSTANDARD = LVTTL |
PULLUP ;

example, usual formua uses infix notation as follows:
(1+2)x(3+4)

To evaluate this formula on the operation stack, the postfix
notation below are used:

1 2 4+ 3 4 + =«

Table 3 shows the specification of the operation stack.

List 12 shows an Verilog HDL description of operaiton
stack. It isntantiate ALU and stack.

List 13 is an example of a test bench for operation stack.
In this example, the infix notation of the following formula
is evaluated.

(—(2+3%4)<5b) || (6>7)

This infix notation must be converted to the postfix notation
as follows:
234 %+ — 5 <67 > |

8 Homework

Homework 1 Design 4-bit counter by instantiating 4 flip
flops and 4 full adders. The 4 flip flops are used to store

© 00~ Uk W+

Table 3: Operation Stack

input operation behavior
clk | reset | num | op load | push pop d
0 - - | asyncronous reset - - -
T 1 1 - | push x 1 0 X
T 1 - 1 | operetion specified by x 1 (binary operation) | s of alu
0 (unary operation)

List 11: Stack stack.v

module stack(clk, reset, load, push, pop, d, qtop, gnext);

input clk, reset, load, push, pop;
input [15:0] d;

output [15:0] gtop, gnext;

reg [15:0] q [3:0];

assign qtop = q[0];
assign gnext = q[1];

always ©(posedge clk or negedge reset)
if(!reset) g[0] <= 0;
else if(load) q[0] <= d;
else if(pop) q[0] <= q[1];

always ©(posedge clk or negedge reset)
if(Ireset) q[1] <= 0;
else if(push) q[1] <= q[0];
else if(pop) q[1] <= q[2];

always @(posedge clk or negedge reset)
if(reset) q[2] <= 0;
else if(push) q[2] <= q[1];
else if(pop) q[2] <= q[3];

always @(posedge clk or negedge reset)
if(Ireset) q[3] <= 0;
else if(push) q[3] <= q[2];

endmodule

List 12: Operation stack opstack.v

module opstack(clk,reset,num,op,x);

input clk, reset, num, op;
input [15:0] x;

wire [15:0] qtop, gnext, aluout;
wire load, push, pop;

reg [15:0] stackin;

alu alu0(.a(qtop), .b(gnext), .f(x[4:0]), .s(aluout));
stack stackO(.clk(clk), .reset(reset), .load(load), .push(push),
.pop(pop), .d(stackin), .qtop(qtop), .qnext(qnext));

assign load = num | op;
assign push = num;
assign pop = op & “x[4];

always ©(num or op or x or aluout)
if(num) stackin = x;
else if(op) stackin = aluout;
else stackin = 16"hxxxx;

endmodule

DD = = = = e e e e
COXTNDNUTEREWNHFRF OO UTLRWN -

DO NN
INVCR NN

25

[\ N\
[0l Rep]

QoW LWL WLWWN
DO WN—=O©

LW w
[eciNale N |

CUOUT U B B D B S S S
=SB0 s W o =

53

List 13: Test bench opstack_tb.v for operation stack

‘timescale 1ns / 1ps

‘define ADD 5'b00000
‘define SUB 5'b00001
‘define MUL 5'b00010
‘define SHL 5'b00011
‘define SHR 5'b00100
‘define BAND 5'b00101
‘define BOR 5'b00110
‘define BXOR 5'b00111
‘define AND 5'b01000
‘define OR 5'b01001
‘define EQ 5'b01010
‘define NE 5'b01011
‘define GE 5'b01100
‘define LE 5'b01101
‘define GT 5'b01110
‘define LT 5'b01111
‘define NEG 5'b10000
‘define BNOT 5'b10001
‘define NOT 5'b10010

module opstack_tb;

reg clk, reset, num, op;
reg [15:0] x;

opstack opstackO(.clk(clk), .reset(reset), .num(num), .op(op)

. x(x));

initial begin
clk = 0;
forever
#50 clk = “clk;
end

initial begin

reset = 0; num = 0; o
#100 reset = 1; num
#100 num = 1;
#100 num = 1;
#100 num = 0;
#100 num = 0;
#100 num = 0;
#100 num = 1,
#100 num
#100 num
#100 num
#100 num
#100 num
#100 num
end

[e]

X X X X X X X X X X X X

O 0O 000000000

T T T T T TTTTTTTO
1 1 [
OrHOOrHORRROO| T

0;
1
1;
0;
0;
0;

endmodule

Il

T o O T [e

T
ol I
i
’ X
I
N

o

4-bit integer, and the 4 full adders ure used to compute
plus one (+1). Write the test bench for it and perform
the simulation to confirm that it works properly. Also
you need to write the illustration of the diagram of this
4-bit counter.

Homework 2 Design a state machine with 6 states as fol-
lows:

e 6 states are assigned using 3 bits as follows: State0:
3'b000, Statel: 3’b001, State2: 3’b010, State3:
3’b011, Stated: 3’b100, Stateb: 3’b101.

e 2 control inputs nextstate and jumpstate are used as
follows: If the current state is State i and nextstate
is 1, then next state is State (i+1 mod 6). If the
current state is State i and jumpstate is 1, then next
state is State (i+2 mod 6). If both control bits are
0, then the state is not changed.

Homework 3 Extend the stack (List 11) such that it has
six 16-bit registars. After that, write the infix notation
of a formula that has at least 10 operations. Convert
it to the postfix notatin, and write the test bench to
evaluate the formula on the operation stack. Perform
the simulation.

