
Perl programming, and the design of assembler

1 Today’s goal

• Learn Perl programming including lists, associative ar-
rays, regular expressions, pattern matching, and substi-
tution.

• Learn the design of assembler using Perl language.

2 Today’s contents

Step 1 Check 1 Change List 1 to list all prime factors of n.
For example if n = 120, the output must be 2, 2, 2, 3, 5.

Step 2 Check 2 Change List 2 to compute the correlation
coefficient ρ(x, y), which is given by

ρ(x, y) =
E[(X − E[X])(Y − E[Y])]

√

(X − E[X])2
√

(Y − E[Y])2
,

where E[X] is the expected value (average) of X .

Step 3 Check 3 Change List 3 to apply the discount rates
which are stored in a file as follows:

strawberry 30

potato 15

In this case, strawberry and potato are 30% and 15%
off, respectively. The items that are not in the discount
rate list are no discount. Compute the total using the
discount rate.

Step 4 Check 4 Change List 4 to perform the inverse conver-
sion. In other words, “Jan 2, 2008” must be converted
to “2008/1/2.”

Step 5 Write tinyasm (List 5) and execute it to check if it
assemble countdown program (List 6) correctly.

Step 6 Check 5 Let n be a binary number, and g(n) be its
gray code. Table 1 shows 4-bit binary numbers and their
gray code numbers. It should be clear that, for every i,
g(i) and g(i + 1) differs only in one bit.

Table 1: Binary and gray code numbers

n g(n)
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1110
1101 1011
1110 1001
1111 1000

Let n = n3n2n1n0 and g(n) = g3g2g1g0 be a 4-bit num-
ber and its gray code number. g(n) can be computed
from n by

g3 = n3

g2 = n3^n2

g1 = n2^n1

g0 = n1^n0,

where ^ denotes XOR operator. Write an assembly lan-
guage program as follows:

• 16-bit binary number n is given from input port in

• Gray code numbers g(0), g(1), g(2), . . ., g(n − 1)
are written in the output buffer in turn.

Convert the assembly language program into Ver-
ilog HDL, and perform the simulation to confirm that

1

it works properly.

Step 6 Check 6 Implement tinycpu with gray code program
(in Step 5) in the FPGA, and confirm that it works prop-
erly.

3 Compiler and Assembler

Figure 1 illustrates the tasks of compiler and assembler.
Compiler converts a C-like language program into an as-
sembly language program. Assembler converts the assembly
language program into a machine program. The machine
program is converted to a Verilog HDL source codes which
should be included in ram.v. We will design assembler using
Perl language, and compiler using compiler compiler tools in-
cluding flex (lexical analysis) and bison (context analysis).

4 Introduction to Perl language

Perl language borrows features from a variety of other lan-
guages including C language, Lisp, AWK, and sed. Perl takes
lists from Lisp, associative arrays (hashes) from AWK, and
regular expressions from sed. These simplify and facilitate
parsing, text handling, and data management tasks.

4.1 Scalar variables and basic structure

List 1 is a Perl program prime that determines if n is prime.
The first argument of this program is stored in $ARGV[0].
$n is a scalar variable. A scalar variable can store a number

(integer or real number), or a string (text). Using for-loop it
is checked if $n is divisible by $i for $i=2, 3, . . .,

√
n. If it is

divisible for all $i, $n is not prime.

List 1: Perl program prime to determine if n is prime

1 #!/usr/bin/perl −W
2

3 $n=$ARGV[0];
4 for($i=2;$i<=sqrt($n);++$i){
5 if($n%$i==0){
6 print ”$n is not prime.\n”;
7 exit(0);
8 }
9 }

10 print ”$n is prime.\n”;

4.2 Reading a file and handling a list

List 2 is a Perl program sum that compute the sum of two
numbers in a file. It works as follows: Suppose that file data
stores the following values.

1 2

3 4

5 6

If we execute

$./sum data

then we have the output

1+2=3

3+4=7

5+6=11

In this program “<>” means that a line of a file specified
by the first argument is read and it is stored in a special
variable $. Since “<>” returns false if there is no more lines
to be read, while loop is repeated for every line in the file.

A string matching operation is performed for
/([0-9]+)\s+([0-9]+)/. In this string matching, [0-9]

matches one of the characters in 0, 1, . . ., 9, and + means
the repetition for 1 or more times. Hence, [0-9]+ matches
a number. Also, \s is a meta character (Talbe 2) of a
blank. Therefore, /([0-9]+)\s+([0-9]+)/ matches a
line with “number blanks number”. If a line is matched,
/([0-9]+)\s+([0-9]+)/ returns true, and returns false,
otherwise. Also, a substring corresponding to the first
[0-9]+ is stored in a special variable $1, since brackets “()”
includes it. In the same way, the second one is stored in $2.

A list starts with @, while a scalar variable starts from $.
For example, @X and @Y denote lists. A scalar variable $1 is
appended to @X by push(@X,$1). A list is an array of scalar
variables. List @X can be accessed as an array, such that
$X[0], $X[1], . . ., $X[$#X] are scalar variables, where $#X
denotes the index of the last element. Thus, @X has $#X+1
elements. It follows that push(@X,$1) increments $#X and
then stores $1 in $X[$#X].

A loop foreach $x (@X) is used to execute some routine for
each element in @X. Every element in @X is stored in $x in
turn, and the following routine is executed.

Note that, if $x is omitted in foreach $x (@X), then each
element in @X is stored in special variable $.

2

 n=in;
L1:
 out(n);
 unless(n)
 goto L2;
 n=n-1;
 goto L1;
L2:
 halt;
 int n;

000:D000
001:300C
002:200C
003:E000
004:200C
005:500B
006:200C
007:1001
008:F001
009:300C
00A:4002
00B:0000
00C:0000

mem[12’h000] = 16’hD000;
mem[12’h001] = 16’h300C;
mem[12’h002] = 16’h200C;
mem[12’h003] = 16’hE000;
mem[12’h004] = 16’h200C;
mem[12’h005] = 16’h500B;
mem[12’h006] = 16’h200C;
mem[12’h007] = 16’h1001;
mem[12’h008] = 16’hF001;
mem[12’h009] = 16’h300C;
mem[12’h00A] = 16’h4002;
mem[12’h00B] = 16’h0000;
mem[12’h00C] = 16’h0000;

 IN
 POP n
L1: PUSH n
 OUT
 PUSH n
 JZ L2
 PUSH n
 PUSHI 1
 SUB
 POP n
 JMP L1
L2: HALT
n: 0

AssemblerCompilerC-like language programount. Assembly languageprogramount.asm Mahine programount.ma Verilog HDLinitialization inluded in ram.vConversion to Verilg HDL

Figure 1: Compiler and Assembler

Table 2: Meta characters of Perl language

Meta character its value
[] Any character in the bracket．
. Any one character
\d a number．Equivalent to [0-9]．
\w a number or “ ”．Equivalent to [a-zA-Z0-9_]と同じ．
\s blank character(space，tab，or newline)．

3

List 2: Perl program sum to compute the sum of pairs

1 #!/usr/bin/perl −W
2

3 while(<>){
4 if(/([0−9]+) ([0−9]+)/){
5 push(@X,$1);
6 push(@Y,$2);
7 }
8 }
9

10 printf ”%d pairs are stored.\n”,$#X+1;
11

12 $i=0;
13 foreach $x (@X){
14 $y=$Y[$i];
15 $sum=$x+$y;
16 print ”$x+$y=$sum\n”;
17 ++$i;
18 }

4.3 Associative Array

List 3 is a Perl program that computes the total of purchased
goods.

An associative array starts with %, while a list start with
@. For example, %pricelist is an associative array. While
the index of a list is a number, while that of an associative
array is a scalar value. In this example, the associative array
is initialized such that $pricelist{apple}=100, etc.

Using the while loop, the quantity of each item is read from
a file, and stored in associative array %num. For example, if
the file contents is

orange 3

apple 2

strawberry 4

potato 5

bread 6

then %num stores the quantities such that $num{orange}=3,
etc.

keys(%num) is the list of keys of %num, that is,
(orange, apple, strawberry, potato, bread) sort sort
them in alphabetical order. Thus, foreach statement stores
keys of this list in n in the alphabetical order.

Using defined, you can check if an element of an associative
array is defined. For example defined($pricelist{apple})
is true, but defined($pricelist{banana}) if false.

List 3: Perl program price to compute the total price of pur-
chased product

1 #! /usr/bin/perl −W
2

3 %pricelist=(
4 apple=>100,
5 bread=>150,
6 orange=>120,
7 strawberry=>380,
8 potato=>80
9);

10

11 while(<>){
12 if(/(\w+)\s+(\d+)/){
13 $num{$1}=$2;
14 }
15 }
16

17 foreach $n (sort(keys(%num))){
18 $product=$pricelist{$n}∗$num{$n};
19 $total+=$product;
20 printf ”%10s %4d %4d %6d\n”,$n,$pricelist{$n},$num{

$n},$product;
21 }
22 print ”total=$total\n”;

4.4 Substitution

List 4 is a Perl program that converts the formats of date.
For example, if the following file is given as an input,

2008/5/31

2011/10/20

then we have the output as follows:

May 31, 2008

Oct 20, 2011

In this program, associative array @month stores the
names of months, such that $month[0]=Jan. In while
loop, each line of the input stored in special variable
$. s/(\d+)\/(\d+)\/(\d+)/$month[$2-1] $3, $1/ per-
form the substitution on $. Note that “\” is an escape
character. Hence, “\/” corresponds to “/”. Since \d+

matches a number, (\d+)\/(\d+)\/(\d+) matches “num-
ber/number/number”. Also, if matched, 1st, 2nd, and
3rd numbers are stored in special variables $1, $2, and
$3. After that, a matched substring is substituted with
“$month[$2-1] $3, $1”. In this way, variable $ is sub-
stituted. Finally, print; writes $ to the standard output.

4

List 4: Perl program conv to convert the formats of date

1 #!/usr/bin/perl −W
2

3 @month=(Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec
);

4

5 while(<>){
6 s/(\d+)\/(\d+)\/(\d+)/$month[$2−1] $3, $1/;
7 print;
8 }

5 Assembler

List 5 is an assembler program written by Perl, which con-
verts an assembler language program into a machine pro-
gram. The first while loop makes label list %label. The
keys of %label are labels, and their values are correspond-
ing addresses. Note that substitution “s/\w+://” removes
“label:” from $. The first foreach loop outputs the label
list in alphabetical order. The second foreach loop mainly
converts mnemonics and labels into machine code.

List 6 is an assembly language program for countdown. To
assemble this program, execute the following command:

$./tinyasm count.asm

Also, you can use a Perl program List 7 to convert ma-
chine program to Verilog HDL source code. To obtain the
Verilog HDL source code for count.asm, execute the follow-
ing command:

$./tinyasm count.asm | ./mac2mem

The Verilog HDL source code thus obtained can be inserted
in ram.v to initialize memory.

List 6: assembly language program count.asm for countdown

1 IN
2 POP n
3 L1: PUSH n
4 OUT
5 PUSH n
6 JZ L2
7 PUSH n
8 PUSHI 1
9 SUB

10 POP n
11 JMP L1
12 L2: HALT
13 n: 0

List 5: Assembler programtinyasm

1 #!/usr/bin/perl −W
2

3 %MCODE = (HALT=>0x0000,
4 PUSHI=>0x1000,
5 PUSH=>0x2000,
6 POP=>0x3000,
7 JMP=>0x4000,
8 JZ=>0x5000,
9 JNZ=>0x6000,

10 IN=>0xD000,
11 OUT=>0xE000,
12 ADD=>0xF000,
13 SUB=>0xF001,
14 MUL=>0xF002,
15 SHL=>0xF003,
16 SHR=>0xF004,
17 BAND=>0xF005,
18 BOR=>0xF006,
19 BXOR=>0xF007,
20 AND=>0xF008,
21 OR=>0xF009,
22 EQ=>0xF00A,
23 NE=>0xF00B,
24 GE=>0xF00c,
25 LE=>0xF00D,
26 GT=>0xF00E,
27 LT=>0xF00F,
28 NEG=>0xF010,
29 BNOT=>0xF011,
30 NOT=>0xF012);
31

32 $addr=0;
33 while(<>){
34 push(@source,$);
35 if(/(\w+):/){
36 $label{$1}=$addr;
37 s/\w+://;
38 }
39 if(/−?\d+|[A−Z]+/){
40 $addr++;
41 }
42 }
43

44 print ”∗∗∗ LABEL LIST ∗∗∗\n”;
45 foreach $l (sort(keys(%label))){
46 printf ”%−8s%03X\n”,$l,$label{$l};
47 }
48

49 $addr=0;
50 print ”\n∗∗∗ MACHINE PROGRAM ∗∗∗\n”;
51 foreach (@source){
52 $line = $;
53 s/\w+://;
54 if(/PUSHI\s+(−?\d+)/){
55 printf ”%03X:%04X\t$line”,$addr++,$MCODE{

PUSHI}+($1&0xfff);
56 } elsif(/(PUSH|POP|JMP|JZ|JNZ)\s+(\w+)/){
57 printf ”%03X:%04X\t$line”,$addr++,$MCODE{$1

}+$label{$2};
58 }elsif(/(−?\d+)/){
59 printf ”%03X:%04X\t$line”,$addr++,$1&0xffff;
60 } elsif(/([A−Z]+)/){
61 printf ”%03X:%04X\t$line”,$addr++,$MCODE{$1};
62 } else {
63 print ”\t\t$line”;
64 }
65 }

5

List 7: conversion program mac2mem from machine program
to ram.v

1 #!/usr/bin/perl −W
2

3 while(<>){
4 if(/([0−9A−F]+):([0−9A−F]+)(.+)/){
5 print ”mem[12’h$1] = 16’h$2; \/\/$3\n”;
6 }
7 }

6 Homework

Homework 1 Write an assembly language program such
that

• 16-bit gray code number n is given from input port
in

• Binary numbers g−1(0), g−1(1), g−1(2), . . .,
g−1(n− 1) are written in the output buffer in turn.

Perform the simulation to confirm that it works cor-
rectly.

Homework 2 Assembler (List 5) for tinyasm does not han-
dle mistakes in assembly language programs. The mis-
takes includes:

undefined mnemonic undefined mnemonic is used.

undefined label undefined label is used.

multiply defined label the same label is defined twice
or more.

immediate operand is out of range the immediate
value in the operand is not in the range of 12-bit
2’s complement.

initial value is out of range the initial value of the
variables is not in the range of 16-bit 2’s comple-
ment.

Modify the assembler program to find these errors and
output appropriate error messages. Write intentionally
incorrect assembly language programs and show that the
modified assembler program handles them appropriately.

6

