
Compiler Compiler: Flex and Bison

1 Today’s goal

• Learn how to use lexical scanner Flex and context parser
Bison.

• Learn how to write Flex grammar files.

• Learn how to write Bison grammar files.

• Learn how to write assembler MICROC.

2 Today’s contents

Step 1 Check 1 Write a Flex grammar file (List 1) for eval-
uating the postfix formula below and check if it works
correctly.

5 24 8 - * 9 4 + 8 - *

Step 2 Write a Bison grammar file (List 2) for evaluating
postfix formulas and check if it works correctly.

Step 3 Write a Bison grammar file (List 3) for evaluating
the infix formula below and check if it works correctly.

12 - 4 * 5 + 11 * 3

Step 4 Check 2 Write a Flex grammar file (List 4) and a
Bison grammar file (List 5) for evaluating infix formulas
and check if it works correctly using the infix formula
above.

Step 5 Write a Flex grammar file (List 6) and a Bison gram-
mar file (List 7) for MICROC and check if it works cor-
rectly.

Step 6 Write a Flex grammar file (List 6) and a Bison gram-
mar file (List 7) to support shift operations << and >>,
and bitwise operations &, |, and ^.

Step 7 Write a following program using MICROC.

1. n is given from input port in;

2. the following operation is repeated until n is 1.

if n is even, n← n/2.
if n is odd, n← n ∗ 3 + 1.

3. in each iteration, the current value of n is written
in the output buffer.

For example, if n = 3, then we have the following output.

3→ 10→ 5→ 16→ 8→ 4→ 2→ 1

Step 8 Check 3 Compile the MICROC program in Step 7
using the extended MICROC obtained in Step 6. Per-
form the simulation to see if it works properly.

Step 9 Check 4 Generate the bit file for Step 8, and imple-
ment it in the FPGA.

3 Flex and postfix formula evalua-

tion

Flex is a tool for generating a scanner, which recognizes lexi-
cal patterns in a text file. List 1 is a Flex grammar file. Using
Flex, this grammar file converted into a C program that scans
a text file and evaluates a formula in it. We assume that a
formula is a postfix form of

• non-negative integers, and

• three operators +, -, and *.

A flex grammar file consists of four main sections as shown
in Figure 1. In List 1, each section has following elements:

C declarations This section contains the definition of array
s and prototype definitions of five functions, which are
used in actions of grammar rules. This section may be
empty for simple grammars.

Flex declarations It contains simple name definitions. In
List 1, DIGIT is defined as [0-9].

1

%{

C declarations

%}

Flex declarations

%%

Flex grammar rules

%%

Additional C code

Figure 1: Four main sections in Flex grammar files

Grammar rules This section contains one or more
Flex grammar rules. List 1 has four grammar
rules. Each rule is a pair of a pattern and
an action. The action can be empty. In the
the first line, if new line(\n) is matched, action
printf("result=%d\n",s[0]); is executed. In the
next line, {DIGIT}+ is matched with a non-negative inte-
ger. Note that DIGIT is defined to be [0-9]. If matched,
action push(atoi(yytext)); printstack(); is exe-
cuted. These functions are defined in Additional C code
section. The following three patterns \+, -, and * are
matched with +, -, and *, respectively. Since + and *

are special symbols used for regular expressions, escape
character \ is used.

Additional C code The additional C code section is copied
to the end of scanner C program. In List 1, five functions
are defined, used in actions of Flex grammar rules.

To generate the scanner C program for Flex grammar file
postfix.l in List 1 and the executable scanner, execute

$ flex postfix.l

$ gcc -o postfix lex.yy.c -lfl

In the first line, Flex program generates scanner C program
lex.yy.c. The second line generates executable scanner postfix.

The executable scanner postfix read the input from the
standard input. If the following line is given,

4 3 2 * + 1 -

then the output shows the values of the stack and the result-
ing value as follows:

4 0 0 0

3 4 0 0

2 3 4 0

6 4 0 0

List 1: Flex grammer file postfix.l to evaluate a postfix for-
mula

1 %{
2 #include <stdio.h>

3 int s[4];
4 void printstack();
5 void push(int);
6 void add();
7 void sub();
8 void mul();
9 %}

10 DIGIT [0−9]
11 %%
12 \n {printf(”result=%d\n”,s[0]);}
13 {DIGIT}+ {push(atoi(yytext)); printstack();}
14 \+ {add(); printstack();}
15 − {sub(); printstack();}
16 \∗ {mul(); printstack();}
17 %%
18 void printstack(){
19 printf(”%d %d %d %d\n”,s[0],s[1],s[2],s[3]);
20 }
21 void push(int x){
22 s[3]=s[2];
23 s[2]=s[1];
24 s[1]=s[0];
25 s[0]=x;
26 }
27 void add(){
28 s[0]=s[1]+s[0];
29 s[1]=s[2];
30 s[2]=s[3];
31 }
32 void sub(){
33 s[0]=s[1]−s[0];
34 s[1]=s[2];
35 s[2]=s[3];
36 }
37 void mul(){
38 s[0]=s[1]∗s[0];
39 s[1]=s[2];
40 s[2]=s[3];
41 }

2

10 0 0 0

1 10 0 0

9 0 0 0

result=9

4 Bison and postfix formula evalua-

tion

Bison is a tool for generating parsers, which analyzes input
text based on rules defined by context-free grammar. List 2
is a Bison grammar file. Using Bison, this Bison grammar
file is converted into a C program that parses an input text
and evaluates a formula in it.

Similarly to Flex, a Bison grammar file consists of four
main sections as shown in Figure 2. In List 2, each section
has following elements:

C declarations The C declarations section contains macro
definitions and declarations of functions and variables
used in the actions in the grammar rules. List 2 has
#include <stdio.h> in this section because function
printf is used in an action.

Bison declarations This section contains declarations that
define terminal and non-terminal symbols. In List 2,
NUMBER is defined as a token (terminal symbol).

Bison grammar rules This section contains one or more
Bison grammar rules, which are pairs of a rule and an
action. A grammar rule is in the form of

A : B ;

where A is a non-terminal symbol and B is a sequence
of non-terminal/terminal symbols. Intuitively, the rule
means that, the right side sequence is matched with a
substring in the input text, the substring is substituted
with the non-terminal symbol in the left side. If two or
more rules have the same non-terminal symbol in the left
side they can be merged into one by using separator |.
In other words,

A : B1;
A : B2;
A : B3;

can be rewritten with

A : B1 | B2 | B3;

%{

C declarations

%}

Bison declarations

%%

Bison grammar rules

%%

Additional C code

Figure 2: Four main sections in a Bison grammar file

For example, List 2 has four rules for non-terminal sym-
bol expr, which mean that,

• expr← NUMBER

• expr← expr expr +

• expr← expr expr -

• expr← expr expr *

Each rule may have an action which is included in brack-
ets { }. If these rules are applied, the corresponding
action is executed if exists.

Additional C code The additional C code section is copied
to the end of parser C program. In List 2, three functions
are defined. Function yyerror is called if error occurs. To
start parsing we need to call yyparse. Thus, function
main calls yyparse. Function yylex is called when the
parser needs input text. It needs to return a terminal
symbol including a token or character in the input. In
List 2, function yylex reads a character from the standard
input, and returns token NUMBER if it is a digit, returns
the input character verbatim if it is +,-,*, or \n.

To generate a Bison parser, we execute

$ bison -y postfix.y

$ gcc -o postfix y.tab.c

In the first line, bison program generates parser C program
y.tab.c. By compiling this program using gcc, we can obtain
executable parser postfix.

In the Bison grammar file of List 2, two non-terminal sym-
bols input, expr are used. Also, it has five terminal symbols
\n, NUMBER (token), +, -, and *. It contains eight grammar
rules as follows:

1 input← empty

3

List 2: Bison grammer file postfix.y to evaluate a postfix for-
mula

1 %{
2 #include <stdio.h>

3 %}
4 %token NUMBER
5 %%
6 input :
7 | input expr ’\n’ { printf(”result=%d\n”,$2); }
8 ;
9 expr : NUMBER

10 | expr expr ’+’ { $$ = $1 + $2; }
11 | expr expr ’−’ { $$ = $1 − $2; }
12 | expr expr ’∗’ { $$ = $1 ∗ $2; }
13 ;
14 %%
15 int yylex(){
16 int c;
17 while((c=getchar())!=EOF){
18 if(isdigit(c)){
19 ungetc(c,stdin);
20 scanf(”%d”,&yylval);
21 return(NUMBER);
22 } else if(c==’+’|c==’−’|c==’∗’|c==’\n’)
23 return(c);
24 }
25 }
26 int yyerror(char ∗s){printf(”%s\n”,s);}
27 int main(){yyparse();}

2 input← input expr \n

3 expr← NUMBER

4 expr← expr expr +

5 expr← expr expr -

6 expr← expr expr *

The parser read the input using yylex and apply these rules.
The parsing is successful if we have non-terminal input when
we have read the whole input. For example, input 432*+1-
is parsed as follows:

432 ∗+1− \n
yylex
→ NUMBER32 ∗+1− \n
3
→ expr32 ∗+1− \n

yylex
→ exprNUMBER2 ∗+1− \n
3
→ exprexpr2 ∗+1− \n

yylex
→ exprexprNUMBER ∗+1− \n
3
→ exprexprexpr∗+ 1− \n

6
→ exprexpr+1− \n

4
→ expr1− \n

yylex
→ exprNUMBER− \n

3
→ exprexpr−\n

5
→ emptyexpr\n

1
→ inputexpr\n

2
→ input

When the whole input is reduced to first non-terminal symbol
input, the parsing is successful. Also, when the rule is applied,
the corresponding action is executed.

A token can take a semantic value. By default, semantic
values are integers. In the definition of function yylex, the
value of c-’0’ is assigned yylval if c is a digit, and returns
token NUMBER. This means that, the digit is changed to
token NUMBER with semantic value c-’0’. Thus, if c is ’5’,
then it is converted to token NUMBER with semantic value
5. In actions of Bison grammar rules, the semantic values
can be used. For example, rule expr← expr expr + has action
$$=$1+$2, in which, the semantic values of the first and the
second exprs are added and the resulting value are assigned to

4

the semantic value of the left side expr. In general, for any in-
teger i, $i is the semantic value of i-th non-terminal/terminal
symbol in the right side, and $$ is the semantic value of the
left side non-terminal symbol.

5 Infix formula evaluation using Bi-

son

List 3 is a Bison grammar file to evaluate infix formulas. In
the Bison declaration section, associativity and precedence
of operators are defined. In this Bison declaration section, 3
operators +, -, and * are defined to be left associative. The
left associative means that the same operators are evaluated
from the left. For example, since - is left associative, 3−2−1
is evaluated such that (3− 2)− 1. Further, associativity de-
fined later has higher precedence. For example, * has higher
precedence than + and -.

If we give the following input to a parser generated for
List 3,

4 + 3 * 2 - 1

we have the correct result as follows:

result=9

6 Combining Flex and Bison

In List 3, function yylex defined in the additional C code
section works as a scanner. We modify List 3 such that the
scan operation is defined by Flex.

List 4 is a Flex grammar file to scan infix formulas. A
non-negative integer is converted to token NUMBER with
semantic value being its integer value. Characters +, -, *,
and \n are converted to terminal symbols verbatim. Tokens
and terminal symbols are returned to a parser generated by
Bison in List 5. Note that “y.tab.h”, which is a definition
file containing ID numbers of tokens etc assigned using Bison
grammar file (List 5), is included in C declaration section.

We can obtain the executable program for evaluating infix
formulas as follows:

$ flex infix2.l

$ bison -d -y infix2.y

$ gcc -o infix2 lex.yy.c y.tab.c

Flex program generates scanner “lex.yy.c”. Bison program
generates parser “y.tab.c” and its header file “y.tab.h”.

List 3: Bison grammer file infix.y to evaluate infix formulas

1 %{
2 #include <stdio.h>

3 %}
4 %left ’+’ ’−’
5 %left ’∗’
6 %token NUMBER
7 %%
8 input :
9 | input expr ’\n’ { printf(”result=%d\n”,$2); }

10 ;
11 expr : NUMBER
12 | expr ’+’ expr { $$ = $1 + $3;}
13 | expr ’−’ expr { $$ = $1 − $3;}
14 | expr ’∗’ expr { $$ = $1 ∗ $3;}
15 ;
16 %%
17 int yylex(){
18 int c;
19 while((c=getchar())!=EOF){
20 if(isdigit(c)){
21 ungetc(c,stdin);
22 scanf(”%d”,&yylval);
23 return(NUMBER);
24 } else if(c==’+’|c==’−’|c==’∗’|c==’\n’)
25 return(c);
26 }
27 }
28 int yyerror(char ∗s){printf(”%s\n”,s);}
29 int main(){yyparse();}

List 4: Flex grammer file infix2.l to scan infix formulas

1 %{
2 #include ”y.tab.h”
3 %}
4 %%
5 [0−9]+ {yylval=atoi(yytext);return(NUMBER);}
6 \+|−|\∗|\n {return(yytext[0]);}
7 %%
8 int yywrap(){return(1);}

5

List 5: Bison grammer file infix2.y to parse infix formulas

1 %{
2 #include <stdio.h>

3 %}
4 %left ’+’ ’−’
5 %left ’∗’
6 %token NUMBER
7 %%
8 input :
9 | input expr ’\n’ { printf(”result=%d\n”,$2); }

10 ;
11 expr : NUMBER
12 | expr ’+’ expr { $$ = $1 + $3;}
13 | expr ’−’ expr { $$ = $1 − $3;}
14 | expr ’∗’ expr { $$ = $1 ∗ $3;}
15 ;
16 %%
17 int yyerror(char ∗s){printf(”%s\n”,s);}
18 int main(){yyparse();}

7 C-like language MICROC

The specification of MICROC is as follows:

Name A string starts with a English letter followed by En-
glish letters or Arabic numbers. Name is used to define
variable names or labels. Name must be no more than
16 letters. If it has more, first 16 letters are used.

integer A decimal integer.

label A label is in the form “label:”, which indicates the
address to be jumped by goto statement.

variable definition Integer variables are defined such as
“int n=0,m=1;”. If initialization is omitted, it takes
initial value zero.

goto Goto statement takes the form “goto label;” and jumps
to the label.

if-goto and unless-goto These statements takes form
“if(formula) goto label;” and “unless(formula) goto
label;”. if-goto statement jumps to label if the value
of formula is not zero. unless-goto statement jumps to
label if the value of formula is zero.

halt terminate the execution of the program.

out It takes form “ out(formula)” and outputs the resulting
value of the formula.

assignment It takes form “variable = formula;” and the re-
sulting value of formula is stored in the variable.

formula It consists of variables, numbers, arithmetic and
logic operations including addition+, subtraction-, mul-
tiplication *, and equality==.

7.1 Flex grammar file for MICROC

List 6 is a Flex grammar file microc.l. By rule [\t\n\r]

with no action, blank characters are ignored. Tokens EQ,
GOTO, HALT, IF, IN, INT, OUT, UNLESS, NUMBER, and
NAME are retured to the parser. Usually, token is assigned
to reserved words or operations with two or more characters.
If it returns NUMBER or NAME, the matched string up to 16
letters are assigned to the corresponding token as a semantic
value. Note that yylval in List 6 takes a string of characters,
while it takes an integer value by default.

List 6: Flex grammer file microc.l for MICROC

1 %{
2 #include ”y.tab.h”
3 %}
4 %%
5 [\t\n\r]
6 == {return(EQ);}
7 goto {return(GOTO);}
8 halt {return(HALT);}
9 if {return(IF);}

10 in {return(IN);}
11 int {return(INT);}
12 out {return(OUT);}
13 unless {return(UNLESS);}
14 [0−9]+ {strncpy(yylval.s,yytext,16);return(NUMBER);}
15 [a−zA−Z][a−zA−Z0−9]∗ {strncpy(yylval.s,yytext,16);return(

NAME);}
16 . {return(yytext[0]);}
17 %%
18 int yywrap(){ return(1);}

List 7 is a Bison grammar file microc.y for MICROC. In
C declarations section defines the data type of the seman-
tic value. More specifically, “%union{char s[17];}” means
that yylval can store a string up to 17 characters. After
that, “%token <s> NUMBER NAME” defines that they takes a
semantic value with char s[17].

List 7: Bison grammer file microc.y for MICROC

1 %union{char s[17];}
2 %token <s> NUMBER NAME
3 %token EQ GOTO IF UNLESS INT IN OUT HALT
4 %left EQ
5 %left ’+’ ’−’
6 %left ’∗’
7 %%
8 input : statement | input statement
9 ;

10 statement : label | intdef | goto | if | unless | halt | out | assign

6

11 ;
12 label : NAME ’:’ {printf(”%s:\n”,$1);}
13 ;
14 intdef: INT intlist ’;’
15 ;
16 intlist: integer
17 | intlist ’,’ integer
18 ;
19 integer: NAME {printf(”%s: 0\n”,$1);}
20 | NAME ’=’ NUMBER {printf(”%s: %s\n”,$1,$3);}
21 | NAME ’=’ ’−’ NUMBER {printf(”%s: −%s\n”,$1,$4

);}
22 ;
23 goto: GOTO NAME ’;’ {printf(”\tJMP %s\n”,$2);}
24 ;
25 if: IF ’(’ expr ’)’ GOTO NAME ’;’ {printf(”\tJNZ %s\n”,$6);}
26 ;
27 unless: UNLESS ’(’ expr ’)’ GOTO NAME ’;’ {printf(”\tJZ %s

\n”,$6);}
28 ;
29 halt : HALT ’;’ {printf(”\tHALT\n”);}
30 ;
31 out: OUT ’(’ expr ’)’ ’;’ {printf(”\tOUT\n”);}
32 ;
33 assign: NAME ’=’ expr ’;’ {printf(”\tPOP %s\n”,$1);}
34 ;
35 expr: NAME {printf(”\tPUSH %s\n”,$1);}
36 | NUMBER {printf(”\tPUSHI %s\n”,$1);}
37 | IN {printf(”\tIN\n”);}
38 | expr ’+’ expr {printf(”\tADD\n”);}
39 | expr ’−’ expr {printf(”\tSUB\n”);}
40 | expr ’∗’ expr {printf(”\tMUL\n”);}
41 | expr EQ expr {printf(”\tEQ\n”);}
42 ;
43 %%
44 int yyerror(char ∗s){ printf(”%s\n”,s); }
45 int main(){ yyparse(); }

We can obtain MICROC compiler tinyc using Flex and
Bison as follows:

$ flex microc.l

$ bison -d -y microc.y

$ gcc -o microc lex.yy.c yy.tab.c

Also, MICROC countdown program count.c (List ??) can be
converted to an assembly language program as follows:

$./microc < count.c > count.asm

Finally, we can obtain the Verilog HDL code to be inserted
in ram.v.

$./tinyasm < count.asm | ./mac2mem

List 8: Countdown program count.c using MICROC

1 n=in;
2 L1:

3 out(n);
4 unless(n) goto L2;
5 n=n−1;
6 goto L1;
7 L2:
8 halt;
9 int n;

List 9: Assembly language program count.asm for countdown

1 IN
2 POP n
3 L1:
4 PUSH n
5 OUT
6 PUSH n
7 JZ L2
8 PUSH n
9 PUSHI 1

10 SUB
11 POP n
12 JMP L1
13 L2:
14 HALT
15 n: 0

8 Homework

Homework 1 Modify Flex and Bison grammar files (Lists 4
and 5 to support all binary operations in ALU module
alu.v. Give an infix formula containing all binary opera-
tions to confirm that infix formula is evaluated correctly.

Homework 2 Modify MICROC to support all binary oper-
ations in ALU module alu.v. Write a MICROC formula
containing all binary operations and generate the cor-
responding Verilog HDL using the compiler and the as-
sembler. Perform the simulation to confirm if everything
is ok.

7

